2025-2026学年青海黄南州六年级(上)期末试卷数学

一、选择题(共10题,共 50分)

1、矩形,菱形,正方形都具有的性质是(   )

A. 对角线相等 B. 对角线互相平分

C. 对角线平分组对角 D. 四个角都是直角

2、如图,在平行四边形中,平分边于点,且,则的长为(  

A.6 B.5 C.4 D.3

3、某农场各用10块面积相同的试验田种植甲、乙两种大豆,收成后对两种大豆产量单位:吨的数据统计如下: ,则由上述数据推断乙种大豆产量比较稳定的依据是

A.   B.   C.   D.

4、为参加市中学生运动会,某校篮球队准备购买10双运动鞋,各种尺码统计如下表:则这10双运动鞋尺码的中位数和众数分别为(  

尺码(厘米)

25

25.5

26

26.5

27

购买量(双)

1

2

3

2

2

 

 

A. 25.5,26    B. 26,25.5,    C. 25.5,25.5    D. 26,26

5、如图,直线是一次函数的图象,若点在直线上,则的值是( )

A.

B.

C.

D.

6、己如等边的边长为4,点是边上的动点,将绕点逆时针旋转得到,点边的中点,连接,则的最小值是(   )

A.  B.  C.  D. 不能确定

7、如图,把菱形ABCD向右平移至DCEF的位置,作EGAB,垂足GEGCD相交于点KGD的延长线EF于点HDE下列结论BG=AB+HFDG=DE③∠DHE=BAD④∠B=DEF,其中正确结论的个数是(

A1

B2

C3

D4

8、如果ab,则下列不等式正确的是(  )

A.a>﹣b B.a+3b+3 C.2a2b D.

9、如图,在平行四边形ABCD中,∠B=64°,则∠D等于(

A. 26° B. 64° C. 32° D. 116°

10、下列计算正确的是(  )

A.2•3=42

B.2+=2

C.+

D.÷×÷=1

二、填空题(共10题,共 50分)

11、如图,在平面直角坐标系中,点A1A2A3都在x轴上,点B1B2B3都在直线上,OA1B1B1A1A2B2B1A2B2A2A3B3B2A3都是等腰直角三角形,且OA1=1,则点B2019的坐标是_________________.

12、如图,将ABCD的一边BC延长至E,若∠A=110°,则∠1=________

13、已知第一个三角形的周长为1,它的三条中位线组成第二个三角形,第二个三角形的三条中位线又组成第三个三角形,依此类推,第2007个三角形的周长为_________

14、将一批100个数据分成5组,列出分布表,其中第一组与第五组的频率之和是,第二与第四组的频率之和是,那么第三组的频数是___

15、如图,矩形中,在数轴上,若以点为圆心,对角线的长为半径作弧交数轴与点,则点表示的数为__________.

 

16、如图,有一张矩形纸条ABCD,AB=10cm,BC=3cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点上.在点M从点A运动到点B的过程中,若边与边CD交于点E,则点E相应运动的路径长为_____cm.

 

17、如图,于点E于点G,则__________

18、Rt△ABC中,AC=9,BC=12,则AB=________

19、若关于的方程无解,则的值为________

20、如图所示,将矩形ABCD对折,设折痕为MN,再把B点叠在折痕MN上(如图点B′),若AB,则折痕AE的长为__________

三、解答题(共5题,共 25分)

21、1)计算

2)已知,求代数式的值.

22、材料:帕普斯借助函数给出了一种三等分锐角的方法,具体如下:

①建立平面直角坐标系,将已知锐角∠AOB的顶点与原点O重合,角的一边OBx轴正方向重合;

②在平面直角坐标系里,绘制函数y的图象,图象与已知角的另一边OA交于点P

③以P为圆心,2OP为半径作弧,交函数y的图象于点R

④分别过点PRx轴和y轴的平行线,两线相交于点MQ

⑤连接OM,得到∠MOB,这时∠MOBAOB

根据以上材料解答下列问题:

1)设点P的坐标为(a),点R的坐标为(b),则点M的坐标为

2)求证:点Q在直线OM上;

3)求证:∠MOBAOB

4)应用上述方法得到的结论,如何三等分一个钝角(用文字简要说明).

23、已知:如图,在梯形中,上一点,且,求证:是等边三角形.

24、解方程:

25、,是否存在实数,使得代数式能化简为?若能,请求出所有满足条件的值,若不能,请说明理由.

查看答案
下载试卷