陕西西安2025届高二数学上册一月考试题

一、选择题(共12题,共 60分)

1、,则       

A.

B.

C.

D.

2、若关于的方程有三个不相等的实数解,其中,则的值为( )

A.

B.

C.

D.

3、已知函数,则该函数的值域为(   )

A. B. C. D.

4、,则下列四个命题中,正确的是(  

A.,则 B.,则

C.,则 D.,则

5、已知集合 ,则

A.   B.   C.   D. 的关系不确定

6、不等式对于一切实数恒成立,则k的取值范围为( )

A.

B.

C.

D.

7、下列函数中值城不为的有(       

A.

B.

C.

D.

8、下列各组函数是同一函数的是(       

       

       

A.①②

B.①③

C.③④

D.①④

9、已知集合则(       

A.MN=R

B.MN={x|-3≤x<4}

C.MN={x|-2≤x≤4}

D.MN={x|-2≤x<4}

10、已知扇形的周长为7,面积为3,则该扇形的圆心角的弧度数为(       

A.

B.

C.

D.

11、设集合,则(  )

A.M=N

B.

C.

D.

12、已知角终边经过点,则的值为(       

A.

B.

C.

D.

二、填空题(共10题,共 50分)

13、某阅读平台为了吸引用户,决定对部分图书开展限时免费阅读活动.当提供免费阅读的图书为a本时,其用户人数表示不大于a的最大整数).当时,用户人数为________;若该平台想通过本次活动使用户人数不少于5000,则至少需要提供免费阅读的图书数量为________

14、已知角的终边与一次函数的函数图象重合,则的值为__

15、已知集合,若,则实数的取值范围是______.

16、将函数的图象向右平移个单位长度,所得图象经过点,则可能的取值是______.(写出满足条件的一个值即可)

17、函数单调减区间是___________.

18、__________

19、给出两个条件:①;②上单调递增.请写出一个同时满足以上两个条件的一个函数________.(写出满足条件的一个函数即可)

20、定义在上的函数满足,又当时,有.对所有恒成立,则实数的取值范围是__________.

21、已知,且满足,则的最大值为___________.

 

22、已知是定义在上周期为2的偶函数,且当时,,则函数的零点个数有__________个.

三、解答题(共3题,共 15分)

23、已知函数,其图象中相邻的两个对称中心的距离为,再从条件①,条件②,条件③这三个条件中选择一个作为已知.条件①:函数的图象关于直线对称;条件②:函数的图象关于点对称;条件③:对任意实数x恒成立.

(1)求出的解析式;

(2)将的图象向左平移个单位长度,得到曲线,若方程上有两根,求的值及的取值范围.

24、研究发现,在分钟的一节课中,注力指标与学生听课时间(单位:分钟)之间的函数关系为.

(1)在上课期间的前分钟内(包括第分钟),求注意力指标的最大值;

(2)根据专家研究,当注意力指标大于时,学生的学习效果最佳,现有一节分钟课,其核心内容为连续的分钟,问:教师是否能够安排核心内容的时间段,使得学生在核心内容的这段时间内,学习效果均在最佳状态?

25、已知函数

1作出函数的图象

2)利用函数的图象,讨论关于的方程的实数解的个数.

 

查看答案
下载试卷