1、4的算术平方根是( )
A.
B.±2
C.2
D.±
2、如图,线段AB两个端点的坐标分别为A(2.5,5),B(5,0):以原点为位似中心,将线段AB缩小得到线段CD,若点D的坐标为(2.0),则点C的坐标为( )
A.(1,2) B.(1,2.5) C.(1.25,2.5) D.(1.5,3)
3、如图所示的几何体的俯视图是 ( )
A. B.
C.
D.
4、的平方根是( )
A.4 B. C.256 D.
5、下列计算正确的是( )
A.
B.
C.
D.
6、方程的解是x=( )
A.
B.2
C.
D.
7、计算下列各式结果正确的是( )
A.
B.
C.
D.
8、若x=,y=﹣2,则代数式4x﹣3y﹣5的值为( )
A. 3 B. ﹣3 C. ﹣7 D. 7
9、结果为的式子是( )
A. B.
C.
D.
10、下列调查方式不合适的是( )
A.为了了解某班学生今年“五一”期间每天的锻炼时间,采用普查的方式进行统计
B.小芳的妈妈在炒菜时为了了解菜的咸淡情况,采用抽样的方式品尝一下
C.在防控新冠肺炎疫情的关键时期,敬老院门卫处对来访人员的体温情况采用抽样的方式进行检测
D.为了了解江苏省中小学生寒假期间每天登陆“省名师空中课堂”进行学习的情况,采用抽样的方式进行调查
11、函数y=自变量x的取值范围是_____.
12、如图,在中,通过直尺和圆规作
的平分线交
于点
,以
为圆心,
为半径的弧交
于点
,连结
,若
,
,则四边形
的面积是________.
13、如图,以菱形ABCD的顶点B为圆心,BC长为半径画弧.若AB=2,∠B=45°,则图中阴影部分的面积是_____(结果保留π)
14、分解因式:x2﹣16=_____________.
15、如图,△ABC和△ADE均为等腰直角三角形,连接BE,点F、G分别为AD、AC的中点,连接FG.在△ADE绕A旋转的过程中,当B、D、E三点共线时,AB=,AD=1,则线段FG的长为___.
16、某一次函数的函数关系为kx+(k+1)y=1(k是正整数),当k=1时,函数图像与两坐标轴所围成图形的面积为S1,当k=2时,面积为S2,…,当k=n时,面积为Sn,则S1+S2+…+Sn= .
17、如图,在平面直角坐标系中,二次函数图象的顶点是
,与
轴交于
两点,与
轴交于
,点
的坐标是
.
(1)求二次函数图象的顶点坐标并直接写出直线的函数关系式.
(2)作一条平行于轴的直线交二次函数的图象于点
,与直线
于点
.若点
的横坐标分别为
,且
,求
的取值范围.
18、如图,在△ABC中,CD=CA,CE⊥AD于点E,BF⊥AD于点F.求证:∠ACE=∠DBF.
19、为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,若两车合作,各运12趟才能完成,需支付运费共4 800元.若甲、乙两车单独运完此堆垃圾,则乙车所运趟数是甲车的2倍,已知乙车每趟运费比甲车少200元.
(1)分别求出甲、乙两车每趟的运费;
(2)若单独租用甲车运完此堆垃圾,需多少趟?
(3)若同时租用甲、乙两车,则甲车运x趟,乙车运y趟,才能运完此堆垃圾,其中x,y均为正整数.
①当x=10时,y= ;当y=10时,x= ;
②用含x的代数式表示y;
探究:
(4)在(3)的条件下:
①用含x的代数式表示总运费w;
②要想总运费不大于4 000元,甲车最多需运多少趟?
20、已知抛物线y=x2﹣2mx+m2﹣3(m是常数)
(1)证明:无论m取什么实数,该抛物线与x轴都有两个交点.
(2)设抛物线的顶点为A,与x轴的两个交点分别为B、D,点B在点D的右侧,与y轴的交点为 C.
①若点P为△ABD的外心,求点P的坐标(用含m的式子表示);
②当|m|≤,m≠0时,△ABC的面积是否有最大值?如果有,请求出最大值;如果没有,请说明理由.
21、计算:
22、解分式方程.
圆圆的解答正确吗?如果不正确,写出正确的解答.
23、下面给出六个函数解析式:,
,
,
,
,
.
小明根据学习二次函数的经验,分析了上面这些函数解析式的特点,研究了它们的图象和性质。下面是小明的分析和研究过程,请补充完整:
(1)观察上面这些函数解析式,它们都具有共同的特点,可以表示为形如_______,其中x为自变量;
(2)如图,在平面直角坐标系中,画出了函数
的部分图象,用描点法将这个函数的图象补充完整;
(3)对于上面这些函数,下列四个结论:
①函数图象关于y轴对称
②有些函数既有最大值,同时也有最小值
③存在某个函数,当(m为正数)时,y随x的增大而增大,当
时,y随x的增大而减小
④函数图象与x轴公共点的个数只可能是0个或2个或4个
所有正确结论的序号是________;
(4)结合函数图象,解决问题:若关于x的方程有一个实数根为3,则该方程其它的实数根为_______.
24、某校开展校园“美德少年”评选活动,共有“助人为乐”,“自强自立”、“孝老爱亲”,“诚实守信”四种类别,每位同学只能参评其中一类,评选后,把最终入选的20位校园“美德少年”分类统计,制作了如下统计表,后来发现,统计表中前两行的数据都是正确的,后两行的数据中有一个是错误的.
类别 | 频数 | 频率 |
助人为乐美德少年 | a | 0.20 |
自强自立美德少年 | 3 | b |
孝老爱亲美德少年 | 7 | 0.35 |
诚实守信美德少年 | 6 | 0.32 |
根据以上信息,解答下列问题:
(1)统计表中的a= ,b ;
(2)统计表后两行错误的数据是 ,该数据的正确值是 ;
(3)校园小记者决定从A,B,C三位“自强自立美德少年”中随机采访两位,用画树状图或列表的方法,求A,B都被采访到的概率.