广西贵港2025届初二数学下册二月考试题

一、选择题(共10题,共 50分)

1、式子的值为0,那么的值是(  

A.2 B. C. D.不存在

2、为了参加市中学生篮球运动会,一支校篮球队准备购买双运动鞋,各种尺码的统计如表所示,则这双运动鞋尺码的众数和中位数分别为(  )

尺码(厘米)

25

25.5

26

26.5

27

购买量(双)

1

4

2

1

1

A.25.5cm 26 cm

B.26 cm 25.5 cm

C.25.5 cm 25.5 cm

D.26 cm 26 cm

3、如果一个四边形的对角线相等,那么顺次连接这个四边形各边中点所得的四边形一定是(   )

A.梯形

B.矩形

C.菱形

D.正方形

4、有意义,则的取值范围是(

A. B. C. D.任意实数

5、若一个三角形的三边长分别为345,则这个三角形最长边上的中线为(  )

A. 1.8   B. 2   C. 2.4   D. 2.5

6、下列各式是一元一次不等式的是(   )

A.  B.  C.  D.

7、的三边,满足,则的形状是(       

A.等腰三角形

B.等边三角形

C.等腰直角三角形

D.直角三角形

8、下列各组数中,不能作为直角三角形的三边长的是( )

A. 345 B. 467 C. 6810 D. 51213

9、关于直线y=4x,下列说法正确的是(        

A.直线过原点

B.y随x的增大而减小

C.直线经过点(1,2)

D.直线经过二、四象限

10、如图,以正方形ABCD线AC作菱形AEFC,点FDC的延长线上,AFBC于点GFGC的度数(  )

A67.5°

B45°

C60°

D75°

二、填空题(共10题,共 50分)

11、在平面直角坐标系中,点P是直线上的点,P作直线l垂直于x,直线l与直线相交于点QP的横坐标为m,当PQ 6m的取____________

12、已知,则的值为_______

13、一次函数的图象如图所示,则不等式kx+bx+a的解集为_____

14、我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式,后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若BD=3AE=4,则正方形ODCE的边长等于_____

15、如图,等边边长为2,点D为边延长线上一动点,,点F是线段的中点,连接

(1)用等式表示线段的数量关系为:______

(2)线段长度的最小值为:______

16、若关于x的方程的解为正数,则m的取值范围为_____.

17、下列三个分式的最简公分母是____

18、如图,矩形的对角线相交于点,过点的直线分别交于点,且,那么图中阴影部分的面积为__________

19、用适当的符号表示的平方是非负数:________

20、一个四边形的边长依次是abcd,且a2b2c2d22ac2bd,则这个四边形是______,依据是________

三、解答题(共5题,共 25分)

21、化简求值:

÷(a),其中a2b1

22、某智能手机越来越受到大众的喜爱,各种款式相继投放市场,某店经营的A款手机去年销售总额为50000元,今年每部销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.

已知AB两款手机的进货和销售价格如下表:

 

A款手机

B款手机

进货价格(元)

1100

1400

销售价格(元)

今年的销售价格

2000

 

1)今年A款手机每部售价多少元?

2)该店计划新进一批A款手机和B款手机共90部,且B款手机的进货数量不超过A款手机数量的两倍,应如何进货才能使这批手机获利最多?

23、如图在△ABC中,∠ACB=90°,AC=BCCDAB于点D,点EF分别在ACBC上,且∠EDF90°.

1)求证:△AED≌△CFD

2)试判断CECFCD之间的数量关系,并说明理由;

3)若CF=1CE=3,试求DF的长.

24、某校在开展 “校园献爱心”活动中,准备向南部山区学校捐赠男、女两种款式的书包.已知男款书包的单价50元/个,女款书包的单价70元/个.

(1)原计划募捐3400元,购买两种款式的书包共60个,那么这两种款式的书包各买多少个;

(2)在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4800元,如果至少购买两种款式的书包共80个,那么女款书包最多能买多少个.

25、先化简,再求值: ,其中

查看答案
下载试卷