1、给出下列命题,正确的
①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等; ③等腰三角形最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形
A. 1个 B. 2个 C. 3个 D. 4个
2、将图1中的菱形沿对角线裁剪分成的四个三角形,无重叠地拼成如图2所示的正方形.若拼成后中间小正方形的面积为2,则菱形较长对角线与较短对角线的差为( ).
A.2
B.
C.
D.
3、对于二次三项式(
且m为常数)和
,下列结论正确的个数有( )
①当时,若
,则
;
②无论x取任何实数,若等式恒成立,则
;
③当时,
,
,则
;
A.3个
B.2个
C.1个
D.0个
4、如图,数轴上表示1、的对应点分别为A、B,点B关于A点对称点为C,则点C所表示的数为( )
A. -1 B. 1-
C. 2-
D.
-2
5、如图,两个大正方形的面积分别为132和108;则小正方形M的面积为( )
A.240 B. C.
D.24
6、下列说法错误的是( )
A.若点A与点A' 关于直线BC对称,则 AA' 垂直平分BC
B.成轴对称的两个图形一定全等
C.轴对称图形不一定只有一条对称轴
D.等边三角形是轴对称图形
7、如图,△ABC的外角∠ACD的平分线CQ与内角∠ABC的平分线BQ交于点Q,若∠BQC=36°,则∠CAQ的度数为( )
A.54° B.62° C.72° D.75°
8、如图①,在平面直角坐标系中,矩形在第一象限,且
轴.直线
沿
轴正方向平移,被矩形
截得的线段
的长度
与平移的距离
之间的函数图象如图②,那么矩形
的周长为( )
A.6
B.10
C.12
D.4
9、下列命题是假命题的是( )
A.三角形的三条中线都在三角形的内部
B.等腰三角形底边的中点到两腰的距离相等
C.有一个角是60°的等腰三角形是等边三角形
D.全等的两个三角形一定关于某直线成轴对称
10、某种新冠病毒的直径为0.0000076cm,将数字0.0000076用科学记数法表示为( )
A.
B.
C.
D.
11、一次函数.当
时,
, 则
__________.
12、计算:_______________
13、在平面直角坐标系中,点A(1,-2)关于原点成中心对称的点的坐标是____________.
14、若点关于原点的对称点
在第四象限,则
的取值范围是____________.
15、若、
都是实数,且
,则
= .
16、若x、y满足y< +
+4,化简|y-4|-
=__________.
17、方程的解为_______.
18、已知的立方根是5,则
的平方根_________
19、过A、B、C、D、E五个点中任意三点画三角形;
(1)其中以AB为一边可以画出__________个三角形;
(2)其中以C为顶点可以画出 __________个三角形.
20、如图,直角三角形两直角边的长分别为3和4,则直角三角形的两直角边为直径作单圆,则阴影部分的面积是______.
21、已知:正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在的直线上,且随着点P的运动而运动,PE=PD总成立.
(1)如图1,当点P在对角线AC上时,请你猜想PE与PB有怎样的数量关系,并加以证明;
(2)如图2,当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;
(3)如图2,当点P运动到CA的反向延长线上时,请你利用图3画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)
22、已知:如图,已知中, 其中
(1)画出与关于x轴对称的图形
.
(2)写出 各顶点坐标.
(3)求的面积.
23、如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度都是1cm/s,连接PQ,AQ,CP,设点P、Q运动的时间为t(s).
(1)当t为何值时,四边形ABQP是矩形?
(2)当t为何值时,四边形AQCP是菱形?
(3)分别求出(2)中菱形AQCP的周长和面积.
24、计算:(1).
(2).
25、因式分解:.