1、若关于x的一元二次方程x2+(2k﹣1)x+k2=0的两根a、b满足a2﹣b2=0,双曲线 (x>0)经过Rt△OAB斜边OB的中点D,与直角边AB交于C(如图),则S△OBC为( )
A.3
B.
C.6
D.3或
2、如图,在△ABC中,∠C=50°,∠B=35°,分别以点A,B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,直线MN交BC于点D,连接AD.则∠DAC的度数为( )
A. 85° B. 70° C. 60° D. 25°
3、下列各数中,无理数是( )
A.
B.
C.π
D.
4、一个长方形操场的长比宽长70米,根据需要将它扩建,把它的宽增加20米后,它的长就是宽的1.5倍.若设扩建前操场的宽为米,则下列方程正确的是( )
A. B.
C. D.
5、深圳市卫健委2日称,截至4月2日16时,全市指定接种门诊591家,累计接种307万剂次、241万人.将241万用科学记数法表示为( )
A.
B.
C.
D.
6、如图,在边长为1的的正方形网格中,
为
与正方形网格线的交点,下列结论中不正确的是( )
A.
B.
C.
D.
7、如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( )
A.
B.
C.
D.
8、某商品价格元,降价
后又降价
,销售额猛增,商店决定再提价
,提价后这种产品价格为( )
A. 元 B.
元 C.
元 D.
元
9、如果关于x的不等式组的解集为
,且关于y的分式方程
有非负整数解,则符合条件的整数m的值的和是( )
A.
B.
C.
D.
10、已知某种纸一张的厚度约为0.0089cm,用科学计数法表示这个数为( )
A. 8.9×10-5 B. 8.9×10-4 C. 8.9×10-3 D. 8.9×10-2
11、关于的一元二次方程
有两个不相等的实数根,则
的取值范围是_______.
12、两把大小不同、含30度角的三角板如图放置,如图,若AO=2,点N在线段OD上,且NO=1,点P是线段AB上的一个动点,将△COD固定,△AOB绕点O逆时针旋转的过程中,线段PN长度的最大值是_____;最小值是_____.
13、若x2=(-)2,则x=______.
14、中国古代数学专著《九章算术》“方程”一章记载用算筹(方阵)表示二元一次方程组的方法,发展到现代就是用矩阵式=
来表示二元一次方程组
,而该方程组的解就是对应两直线(不平行)与a1x+b1y=c1与a2x+b2y=c2的交点坐标P(x,y).据此,则矩阵式
=
所对应两直线交点坐标是______.
15、若正多边形的一个中心角为,则这个正多边形的一个内角等于________
.
16、小明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时16分钟,如果他骑自行车的平均速度是每分钟240米,推车步行的平均速度是每分钟80米,他家离学校的路程是3000米,设他推车步行的时间为x分钟,则可列方程______.
17、(2017湖南省岳阳市)问题背景:已知∠EDF的顶点D在△ABC的边AB所在直线上(不与A,B重合),DE交AC所在直线于点M,DF交BC所在直线于点N,记△ADM的面积为S1,△BND的面积为S2.
(1)初步尝试:如图①,当△ABC是等边三角形,AB=6,∠EDF=∠A,且DE∥BC,AD=2时,则S1S2= ;
(2)类比探究:在(1)的条件下,先将点D沿AB平移,使AD=4,再将∠EDF绕点D旋转至如图②所示位置,求S1S2的值;
(3)延伸拓展:当△ABC是等腰三角形时,设∠B=∠A=∠EDF=α.
(Ⅰ)如图③,当点D在线段AB上运动时,设AD=a,BD=b,求S1S2的表达式(结果用a,b和α的三角函数表示).
(Ⅱ)如图④,当点D在BA的延长线上运动时,设AD=a,BD=b,直接写出S1S2的表达式,不必写出解答过程.
18、重庆轨道5号线正在如火如荼地建设中.如图工程队在由南向北的方向上将轨道线路铺设到A处时,测得档案馆C在A北偏西30°方向的600米处,再铺设一段距离到达B处,测得档案馆C在B北偏西45°方向.
(1)请求出A、B间铺设了多远的距离;(结果保留整数,参考数据:,
)
(2)档案馆C周围米内要建设文化广场,不能铺设轨道,若工程队将轨道线路铺设到B处时,沿北偏东15°的BE方向继续铺设,请问这是否符合建设文化广场的要求,通过计算说明理由.
19、如图,在正方形中,
是对角线
上的一个动点
,连接
,过点
作
交
于点
.
(1)如图①,求证:;
(2)如图②,连接为
的中点,
的延长线交边
于点
,当
时,求
和
的长;
(3)如图③,过点作
于
,当
时,求
的面积.
20、随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行.某自行车厂生产的某型号自行车去年销售总额为8万元.今年该型号自行车每辆售价预计比去年降低200元.若该型号车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求该型号自行车去年每辆售价多少元?
21、某数学活动小组在一次活动中,对一个数学问题作如下探究:
问题发现:如图1,在等边三角形ABC中,点M是边BC上任意一点,连接AM,以AM为边作等边三角形AMN,连接CN,证明:BM=CN.
变式探究:如图2,在等腰三角形ABC中,BA=BC,∠ABC=∠α,点M为边BC上任意一点,以AM为腰作等腰三角形AMN,MA=MN,使∠AMN=∠ABC,连接CN,请求出的值.(用含α的式子表示出来)
解决问题:如图3,在正方形ADBC中,点M为边BC上一点,以AM为边作正方形作AMEF,N为正方形AMEF的中心,连接CN,若正方形AMEF的边长为,CN=
,请你求正方形ADBC的边长.
22、在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.选凉亭A,C作为观测点.如图,现测得∠CAB=45°,∠ACB=98°,AC=200米,请计算A,B两个凉亭之间的距离、(结果精确到1米)(参考数据:≈1.414,
≈1.732,sin 37°≈0.6,cos 37°≈0.8,tan 37°≈0.75)
23、如图,在菱形中,点
分别在
,
上,且
.
(1)求证.
(2)若,
,求
的度数.
24、解方程: