1、函数y=,自变量x的取值范围是( )
A.x≠-2
B.x≤2
C.x>-2
D.x≥-2
2、为贯彻落实“绿水青山就是金山银山”的发展理念,高坪区提出打造“森林城市”目标,绿色森林点亮城市,城市景色不断添绿.我区2019年底森林覆盖率为33.5%,在2021年底森林覆盖率达到35.6%,设我区这两年森林覆盖率的年平均增长率为x,那么可列方程为( )
A.
B.
C.
D.
3、小明制作了10张卡片,分别标有1-10这十个数字。从这十张卡片中随机抽取一张恰好能被3整除的概率是( )
A. B.
C.
D.
4、如图,点M是反比例函数(x>0)图像上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为( )
A.1
B.2
C.4
D.不能确定
5、使式子有意义的x取值范围是( )
A.x>-1 B.x≥-1 C.x<-1 D.x≤-1
6、如图是二次函数的图象,其对称轴为
.下列结论:①
;②
;③
;④若
是抛物线上两点,则
.其中正确的结论有( )
A.1个
B.2个
C.3个
D.4个
7、如图,AC⊥BC,,D是AC上一点,连接BD,与∠ACB的平分线交于点E,连接AE,若
,
,则BC=( )
A.
B.8
C.
D.10
8、如图1,点E为矩形ABCD边AD上一点,点P点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s.设P,Q出发t秒时,△BPQ的面积为y cm2,已知y与t的函数关系的图象如图2(曲线OM为抛物线的一部分).则下列结论:①AD=BE=5cm;②当0<t≤5时,;③直线NH的解析式为y=
t+27; ④若△ABE与△QBP相似,则t=
秒, 其中正确结论的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
9、某自动控制器的芯片,可植入2020000000粒晶体管将2020000000用科学记数法表示应为( )
A.
B.
C.
D.
10、下列图形中,阴影部分面积最大的是:( )
11、如图,E为正方形ABCD的边AB上一动点,过E作EF∥BC交AC于点F,G为DE的中点,连接FG,AB=4,则FG的最小值是________.
12、如图,已知函数的图象与函数
的图象交于
、
两点,连接
并延长交函数
的图象于点
,连接
,若
的面积为12,则
的值为______.
13、如图坐标系中有△AOB,A(0,3),B(4,0),在 y 轴上有一点 P,当2∠BPO= ∠BAO 时,点 P 的坐标为_____.
14、南京奥林匹克体育中心位于南京市区西部,总占地面积896000平方米,是2014年南京青奥会主要场馆.数据896000用科学计数法表示为:___________.
15、一元二次方程x(x-2)=0的解是______.
16、已知扇形的弧长为4π,半径为8,则此扇形的圆心角为____.
17、分别静止在A、B处(B在A的正北方)是我国两艘军舰相距10km,为在D处的一艘我国货轮执行护航任务,A处军舰测得D点在南偏东63.4°,B处军舰测得D点在南偏东36.8°.货轮沿着北偏东16.4°方向航行了12km到达C点,此时在B处的军舰测得C点在南偏东73.6°方向上.
(1)求∠BCD的度数;
(2)求AD的长.(参考数据:sin36.8°≈0.60,cos36.8°≈0.80,tan26.6°≈0.50,≈2.24)
18、如图,△ABC中,A(﹣4,4),B(﹣4,﹣2),C(﹣2,2).
(1)请画出将△ABC向右平移8个单位长度后的△A1BlC1;
(2)求出∠A1BlC1的余弦值;
(3)以O为位似中心,将△A1BlC1缩小为原来的,得到△A2B2C2,请在y轴右侧画出△A2B2C2.
19、如图1,P(m,n)在抛物线y=ax2-4ax(a>0)上,E为抛物线的顶点.
(1)求点E的坐标(用含a的式子表示);
(2)若点P在第一象限,线段OP交抛物线的对称轴于点C,过抛物线的顶点E作x轴的平行线DE,过点P作x轴的垂线交DE于点D,连接CD,求证:CD∥OE;
(3)如图2,当a=1,且将图1中的抛物线向上平移3个单位,与x轴交于A、B两点,平移后的抛物线的顶点为Q,P是其x轴上方的对称轴上的动点,直线AP交抛物线于另一点D,分别过Q、D作x轴、y轴的平行线交于点E,且∠EPQ=2∠APQ,求点P的坐标.
20、某数学兴趣小组用高为1.2米的测角仪测量小树AB的高度,如图,在距AB一定距离的F处测得小树顶部A的仰角为50°,沿BF方向行走3.5米到G处时,又测得小树顶部A的仰角为27°,求小树AB的高度.(参考数据:sin27°=0.45,cos27°=0.89,tan27°=0.5,sin50°=0.77,cos50°=0.64,tan50°=1.2)
21、某商场开展“消费暖心”活动,本次活动中的家电消费单笔交易满300元立减38元,某品牌电饭煲按进价提高50%后标价,再按标价的九折销售.某顾客购买该电饭煲时,实付现金340元,求该电饭堡的进价.
22、某学校为了了解九年级学生“一分钟跳绳”体育测试项目情况,随机抽取了九年级部分学生组成测试小组进行调查测试,并对这部分学生“一分钟跳绳”测试的成绩按A,B,C,D四个等级进行了统计,并绘制了如下两幅不完整的统计图.
(1)本次随机调查抽样的样本容量为 ;
(2)D等级所对扇形的圆心角为 °,并将条形统计图补充完整;
(3)如果该学校九年级共有400名学生,那么根据以上样本统计全校九年级“一分钟跳绳”测试成绩为A等级的学生有 人;
(4)现有测试成绩为A等级,且表现比较突出的两男两女共4名学生,计划从这4名学生中随机抽取2名同学作平时训练经验交流,请用列表法或画树状图的方法,求所选两位同学恰好是1男1女的概率.
23、榴莲上市的时候,某水果行以“线上”与“线下”相结合的方式一共销售了箱榴莲.已知“线上”销售的每箱利润为
元.“线下”销售的每箱利润
(元)与销售量
(箱)
之间的函数关系如图中的线段
.
(1)求与
之间的函数关系.
(2)当“线下”的销售利润为元时,求
的值.
(3)实际“线下”销售时,每箱还要支出其它费用元
,若“线上”与“线下”售完这
箱榴莲所获得的最大总利润为
元,求
的值.
24、先化简,再求值: ,其中
.