1、如图所示的圆形纸板被等分成 10 个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是( )
A.
B.
C.
D.
2、一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164, 168,185,则这组数据的中位数为( )
A. 172 B. 171 C. 170 D. 168
3、如图,正此例函数,与反比例函数
的图象交于
、
两点,其中
,
当
的函数值大于
的函数值时,x的取值范围( )
A. B.
C. 或
D.
或
4、二次函数y=x ²-x+m(m为常数)的图象如图所示,当x=a时,y<0;那么当x=a-1时,函数值( )
A. y<0 B. 0<y<m C. y>m D. y=m
5、如图是由个完全相同的小正方体搭成的几何体,它的主视图是( )
A. B.
C.
D.
6、如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5m时,标准视力表中最大的“”字高度为72.7mm,当测试距离为3m时,最大的“
”字高度为( )mm.
A.34.36
B.27.26
C.43.62
D.12.17
7、某班同学一周参加体育锻炼时间的统计情况如表所示:
人数/人 | 4 | 19 | 14 | 8 |
时间/小时 | 7 | 8 | 9 | 10 |
那么该班同学一周参加体育锻炼时间的众数是( ).
A.7
B.8
C.9
D.10
8、如图,直线y=k和双曲线y=相交于点P,过点P作PA0垂直于x轴,垂足为A0,x轴上的点A0,A1,A2,…An的横坐标是连续整数,过点A1,A2,…An:分别作x轴的垂线,与双曲线y=
(k>0)及直线y=k分别交于点B1,B2,…Bn和点C1,C2,…Cn,则
的值为( )
A. B.
C.
D.
9、下列图形中一定属于中心对称图形的是( )
A.教室的三叶片电风扇
B.等腰三角形
C.等边三角形
D.平行四边形
10、一个物体对桌面的压力为10 N,受力面积为Scm2,压强为PPa,则下列关系不正确的是( )
A. P= B. S=
C. PS=10 D. P=
11、下列事件:①打雷后会下雨;②明天是晴天;③1小时等于60分钟;④从装有2个红球,2个白球的袋子中摸出一个蓝球.其中是确定性事件的是________.(填序号)
12、如图,是边长为
的等边三角形
,将绕边
的中点
逆时针旋转
,点
的运动路径为
,则图中阴影部分的面积为__________.
13、不等式组的解集是 .
14、如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:①∠BAE=30°;②射线FE是∠AFC的角平分线;③AE2=AD•AF;④AF=AB+CF.其中正确结论为是______.(填写所有正确结论的序号)
15、观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为_____.
16、已知扇形弧上连同两个端点共有4个点,将这4点与圆心连接,则共可得____________个扇形.
17、如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.(结果保留根号)
18、某果农的苹果园有苹果树60棵,由于提高了管理水平,可以通过补种一些苹果树的方法来提高总产量.但如果多种树,那么树之间的距离和每棵树所受的光照就会减少,单棵树的产量也随之降低.已知在一定范围内,该果园每棵果树产果y(千克)与补种果树x(棵)之间的函数关系如图所示.若超过这个范围,则会严重影响果树的产量.
(1)求y与x之间的函数关系式;
(2)在这个范围内,当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?
(3)若该果农的苹果以3元/千克的价格售出,不计其他成本,按(2)的方式可以多收入多少钱?
19、如图是小米洗漱时的侧面示意图.洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小米身高160cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).
(1)此时小米头部E点与地面DK相距多少?
(2)若小米的头部E恰好在洗漱盆AB的中点O的正上方,她应向前或向后移动多少厘米?(sin80°≈0.98,cos80°≈0.18,≈1.41,结果精确到0.1)
20、已知关于x的方程x2-(2m+1)x+m(m+1)=0.
(1)求证:方程总有两个不相等的实数根;
(2)已知方程的一个根为x=0,求代数式(2m-1)2+(3+m)(3-m)+7m-5的值(要求先化简再求值).
21、小明和小李准备七月初到重庆或长沙去旅游,为了了解这两个城市哪个更热,他们查阅资料,收集了两个城市2018年七月前两周最高温度的记录,如下表
日期(七月) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
重庆最高温度/℃ | 33 | 36 | 34 | 31 | 31 | 30 | 30 | 33 | 34 | 36 | 37 | 35 | 37 | 37 |
长沙最高温度/℃ | 29 | 34 | 35 | 35 | 36 | 29 | 31 | 31 | 34 | 35 | 35 | 31 | 35 | 35 |
根据上表,他们将两个城市的最高温度分别绘制了如下的频数分布直方图和统计表,并对数据进行了整理
最高温度/℃ | 天数 |
|
|
| |||
28≤x<30 | 2 |
|
|
| |||
30≤x<32 | a |
|
|
| |||
32≤x<34 | 0 |
|
|
| |||
34≤x<36 | 8 |
|
|
| |||
36≤x<38 | 1 |
|
|
| |||
| 平均数/℃ | 中位数/℃ | 众数/℃ | 34℃以上天数 | 30℃以下天数 | ||
重庆 | 33.9 | 34 | c | 6 | 0 | ||
长沙 | 33.2 | b | 35 | 7 | 2 | ||
回答如下问题
(1)本次调查的目的是 ;
(2)补全频数分布直方图并写出表中a,b,c的值,a= ,b= ,c= ;
(3)结合以上分析,你认为七月初哪个城市更热,请写出两条支持你观点的理由.
22、综合与探究
(1)如图1,在正方形中,点E,F分别在边
上,且
,则线段
与
的之间的数量关系为______;
(2)【类比探究】如图2,在矩形中,
,
,点E,F分别在边
上,且
,请写出线段
与
的数量关系,并证明你的结论.
(3)【拓展延伸】如图3,在中,
,
,
,D为
上一点,且
,连接
,过点B作
于点F,交
于点E,求
的长.
23、如图,在中,
,
,线段
为边向外作等边
,点
是线段
的中点,连接
并延长交线段
于点
.
(1)求证:四边形为平行四边形;
(2)若,求平行四边形
的面积.
24、如图,左边格点图中有一个四边形ABCD,请在右边的格点图中画一个与该四边形相似的四边形A'B'C'D'.