1、如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为( )
A.60 n mile
B.60 n mile
C.30 n mile
D.30 n mile
2、正比例函数y=(k+1)x,若y随x增大而减小,则k的取值范围是( )
A. k>1 B. k<1 C. k>﹣1 D. k<﹣1
3、抗击疫情,众志成城,举国上下,共克时艰.为确定应对疫情影响稳外贸稳外资的新举措,国务院总理李克强 3 月 10 日主持召开国务院常务会议,要求更好发挥专项再贷款再贴 现政策作用,支持疫情防控保供和企业纾困发展.会议指出,近段时间,有关部门按照国务 院要求,引导金融机构实施亿元专项再贷款政策,以优惠利率资金有力支持了疫情防 控物资保供、农业和企业特别是小微企业复工复产.要进一步把政策落到位,加快贷款投放 进度,更好保障防疫物资保供、春耕备耕、国际供应链产品生产、劳动密集型产业、中小微 企业等资金需求.数据
亿元用科学记数法表示为( )
A.元 B.
元 C.
D.
4、如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2米,旗杆底部与平面镜的水平距离为12米,若小明的眼睛与地面的距离为1.5米,则旗杆的高度为( )
A.9
B.12
C.14
D.18
5、下列平面图形中是中心对称图形的为( )
A.
B.
C.
D.
6、已知一个三角形的三条边长均为正整数.若其中仅有一条边长为5,它又不是最短边,则满足条件的三角形有( )
A.4 B.6 C.8 D.10
7、如图,次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车长),火车在隧道内的长度与火车进入隧道的时间
之间的关系用图象描述大致是( )
A. B.
C.
D.
8、下列说法正确的是( )
A.“掷一次骰子,向上一面的点数是3”是随机事件
B.要了解我国中学生的视力情况应做全面调查
C.一组数据中,平均数是4,众数是3,则中位数一定是5
D.甲、乙两组数据,若,则乙组的数据波动大
9、计算正确的是 ( )
A.
B.
C.
D.
10、如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )
A.16
B.14
C.12
D.10
11、如图,在Rt△中,斜边
上的高AD=4,
,则AC=________.
12、把所有的正整数按一定规律排列成如图所示的数表,若根据行列分布,正整数6对应的位置记为(2,3),则位置(4,2)对应的正整数是_____.
13、如图,在△ABC中,∠BAC的平分线AD与边BC的垂直平分线ED相交于点D,过点D作DF⊥AC交AC延长线于点F,若AB=8,AC=4,则CF的长为_________.
14、如图,,在射线AC上顺次截取
,
,以
为直径作
交射线
于
、
两点,则线段
的长是__________cm.
15、眼下正值惊蛰时节,春雷始鸣,我市进入雷电多发期,如图是某校在教学楼顶安装的避雷针,根据图中所给的数据,避雷针的长约为________
(结果精确到
).
16、如图,在平面直角坐标系中,直线y=与x轴交于点A,与y轴正半轴交于点B,以AB为边在第一象限内作等边三角形ABC,连接OC,则直线OC的解析式为______.
17、某商场销售两款三星的智能手机,这两款手机的进价和售价如下表所示:
该商场计划购进两款手机若干部,共需15.5万元,预计全部销售后获毛利润共2.1万元(毛利润=(售价-进价)×销售量)
(1)该商场计划购进甲、乙两款手机各多少部?
(2)通过市场调研,该商场决定在原计划的基础上,减少甲手机的购进数量,增加乙手机的购进数量,已知乙手机增加的数量是甲手机减少的数量的3倍,而且用于购进这两款手机的总资金不超过17.25万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润。
18、已知:如图中,
.
求作:点P,使得点P在上,且点P到
的距离等于
.
作法:
①以点B为圆心,以任意长为半径作弧,分别交射线于点
;
②分别以点为圆心,以大于
的长为半径作弧,两弧在
内部交于点F;
③作射线交
于点P.则点P即为所求.
(1)使用直尺和圆规,补全图形(保留作图痕迹);
(2)完成下面证明.
证明:连接.
在和
中
.
(_________________)(填推理的依据).
,点P在
上,
.
作于点Q,
点P在
上,
__________(______________________)(填推理的依据).
19、如图,为
的直径,点C为
上一点,
的平分线与
交于点D,与
交于点E.点F为
的延长线上一点,满足
.
(1)求证:与
相切;
(2)若,
,求
的面积.
20、近年来网约车十分流行,初三某班学生对“美团”和“滴滴”两家网约车公司各10名司机月收入进行了一项抽样调查,司机月收入(单位:千元)如图所示:
根据以上信息,整理分析数据如下:
| 平均月收/千元 | 中位数/千元 | 众数/千元 | 方差/千元 |
“美团” | ① | 6 | 6 | 1.2 |
“滴滴” | 6 | ② | 4 | ③ |
(1)完成表格填空:①__________②__________③__________
(2)若从两家公司中选择一家做网约车司机,你会选哪家公司,并说明理由.
21、如图,△BCD内接于⊙O,BD是直径,DA是△BCD外角的平分线. AE⊥CD交CD的延长线于E.
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1㎝, 求BD的长.
22、水果店张阿姨以每斤4元的价格购进某种水果若干斤,然后以每斤6元的价格出售,每天可售出150斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);
(2)销售这种水果要想每天盈利450元,张阿姨需将每斤的售价降低多少元?
23、解方程:
24、图1是一个倾斜角为的斜坡的横截面,
.斜坡顶端B与地面的距离
为3米.为了对这个斜坡上的绿地进行喷灌,在斜坡底端安装了一个喷头A,喷头A喷出的水珠在空中走过的曲线可以看作抛物线的一部分.设喷出水珠的竖直高度为y(单位:米)(水珠的竖直高度是指水珠与地面的距离),水珠与喷头A的水平距离为x(单位:米),y与x之间近似满足函数关系
(a,b是常数,
),图2记录了x与y的相关数据.
(1)求y关于x的函数关系式;
(2)斜坡上有一棵高1.8米的树,它与喷头A的水平距离为2米,通过计算判断从A喷出的水珠能否越过这棵树.