1、下列调查中,最适宜采用全面调查方式(普查)的是()
A. 对重庆市中学生每天学习所用时间的调查
B. 对全国中学生心理健康现状的调查
C. 对某班学生进行6月5日是“世界环境日”知晓情况的调查
D. 对重庆市初中学生课外阅读量的调查
2、-2的相反数是( )
A. 2 B. -2 C. D.
3、反比例函数y=(k>0)在第一象限内的图象如图,点M是图象上一点,MP垂直x轴于点P,如果△MOP的面积为1,那么k的值是( )
A.1 B.2 C.4 D.
4、二次函数y=x2﹣6x+m满足以下条件:当﹣2<x<﹣1时,它的图象位于x轴的下方;当8<x<9时,它的图象位于x轴的上方,则m的值为( )
A.27
B.9
C.﹣7
D.﹣16
5、已知y=﹣
+3,则
的值为( )
A. 2 B. 3
C. 12 D. 18
6、《九章算术》有题曰:“今有五雀,六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕雀重一斤.问燕雀一枚各重几何?”其大意是:“现在有5只雀,6只燕,分别集中放在天平上称重,聚在一起的雀重燕轻.将一只雀一只燕交换位置而放,重量相等.5只雀、6只燕重量共一斤,问雀和燕各重多少?”古代记1斤为16两,则设1只雀两一只燕
两,可列出方程( ).
A.
B.
C.
D.
7、如图,在中,分别以点A和点C为圆心,大于
的长为半径作弧,两弧相交于
两点,作直线
,交
于点
的周长为13,则
的周长是( )
A.16
B.17
C.18
D.19
8、如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠C=40°,则∠ABO的度数是( )
A. 50° B. 40° C. 25° D. 20度
9、的值等于( )
(A) (B)
(C)
(D)
10、位于南岸区黄桷垭的文峰塔,有着“平安宝塔”之称.某校数学社团对其高度 AB进行了测量.如图,他们从塔底A的点B出发,沿水平方向行走了13米,到达点C,然后沿斜坡CD继续前进到达点D处,已知DC=BC.在点D处用测角仪测得塔顶A的仰角为42°(点A,B,C,D,E在同一平面内).其中测角仪及其支架DE高度约为0.5米,斜坡CD的坡度(或坡比)i=1:2.4,那么文峰塔的高度AB约为( )(sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
A. 22.5 米 B. 24.0 米 C. 28.0 米 D. 33.3 米
11、如图,是
的两条切线,切点分别为A,B,连接
,若
,则
________
.
12、|﹣6.18|=____
13、因式分解:2x2y﹣8y3=_____.
14、如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于_____.
15、如图,若用圆心角为,半径为
的扇形围成一个圆锥则面(接缝忽略不计),则这个圆锥的底面半径是__________.
16、若直线与双曲线
相交于
,则代数式
的值为__________.
17、计算:.
18、等边中,
是中线,一个以点
为顶点的30°角绕点
旋转,使角的两边分别与
,
的延长线相交于点
,
.
交
于点
,
交
于点
.
(1)如图①,若,求证:
.
(2)如图②,在绕点
旋转的过程中:
①探究三条线段,
,
之间的数量关系,并说明理由;
②若,
,求
的长.
19、如图,由12个形状、大小完全相同的小矩形组成一个大的矩形网格,小矩形的顶点称为这个矩形网格的格点,已知这个大矩形网格的宽为6,△ABC的顶点都在格点.
(1)求每个小矩形的长与宽;
(2)在矩形网格中找一格点E,使△ABE为直角三角形,求出所有满足条件的线段AE的长度.
(3)求sin∠BAC的值.
20、如图,在△ABC中,AB=BD,∠BAD=50°,∠C=30°.
(1)求∠BAC的度数;
(2)取AD的中点E,连接BE并延长交AC于点F.求证:AB=BF.
21、如图,是线段AD上的两点,且
,点
在同一直线上,且
分别是
的中点,
求证:
22、如图,一条直线与反比例函数的图像交于
、
两点,与
轴交于
点,
轴,垂足为
.
(1)如图甲,求反比例函数的解析式与点的坐标;
(2)如图乙,若点在线段
上运动,连接
,作
,
交
于
点.试说明
.
23、如图所示,△ABC,△ADE为等腰直角三角形,∠ACB=∠AED=90°.(1)如图1,点E在AB上,点D与C重合,F为线段BD的中点.则线段EF与FC的数量关系是 ;∠EFD的度数为 ;
(2)如图2,在图1的基础上,将△ADE绕A点顺时针旋转到如图2的位置,其中D、A、C在一条直线上,F为线段BD的中点.则线段EF与FC是否存在某种确定的数量关系和位置关系?证明你的结论;
(3)若△ADE绕A点任意旋转一个角度到如图③的位置,F为线段BD的中点,连接EF、FC,请你完成图3,请猜想线段EF与FC的关系,并验证你的猜想.
24、从2019年底以来,新冠疫情一直困扰着我们的日常生活,今年为进一步加强疫情防控工作,某公司决定安装红外线体温检测仪,这种设备的原理是采用非接触式测温法,只要用红外体温测试仪的镜头对准被测对象进行扫描,其体温就可立刻在显示屏上显示出来,从而有效地避免了其他常规测温法所可能造成的交叉感染,测温区域示意图如图所示,已知最大探测角∠PAO=75°,最小探测角∠PBO=30°.(参考数据:=1.414,
=1.732,
=2.236)
(1)若该设备安装在离水平地面距离为2.2m的P处,即OP=2.2m,请求出图中OB的长度;(结果精确到0.1m)
(2)若该公司要求测温区域AB的长度为4 m,请求出该设备的安装高度OP的高度.(结果精确到0.1 m)