1、如图,在△ABC中,DE∥BC,,DE=4,则BC的长( )
A.8
B.10
C.12
D.16
2、下列计算中,正确的是( )
A.x3•x2=x4 B.x(x-2)=-2x+x2
C.(x+y)(x-y)=x2+y2 D.3x3y2÷xy2=3x4
3、已知△ABC∽△A'B'C',如果它们的相似比为2:3,那么它们的面积比是( )
A.3:2
B.2:3
C.4:9
D.9:4
4、已知函数的图象如图,有以下结论:
①m<0;
②在每一个分支上,y随x的增大而增大;
③若点A(-1,a)、B(2,b)在图象上,则a<b;
④若点P(x,y)在图象上,则点P1(-x,-y)也在图象上.
其中正确结论的个数为( )
A. 4 B. 3 C. 2 D. 1
5、事件“关于y的方程a2y+y=1有实数解”是( )
A. 必然事件 B. 随机事件 C. 不可能事件 D. 以上都不对
6、第 24 届冬奥会将于 2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是( )
A.
B.
C.
D.
7、如图,将边长为的正方形
沿其对角线
剪开,再把
沿着
方向平移,得
到,若两个三角形重叠部分的面积为
,则它移动的距离
等于( )
A. B.
C.
D.
8、如图,在5×5的正方形网格中,△ABC的顶点都在格点上,则tan∠BAC的值等于( )
A.
B.3
C.1
D.
9、如图,抛物线的对称轴是直线
,且抛物线经过点
.下面给出了四个结论:①
;②
;③
;④
.其中结论正确的个数是( )
A.1个
B.2个
C.3个
D.4个
10、人体最小的细胞是血小板, 个血小板紧密排成一直线长约
,则
个血小板的直径用科学计数法表示为( ).
A. B.
C.
D.
11、如图,在△ABC中,∠ABC=90°,∠C=30°,BC=8.D是边BC上一点,BD=6,以BD为一边向上作正三角形BDE,BE、DE与AC分别交于点F、G,则线段FG的长为_____.
12、因式分解:x3y﹣6x2y+9xy=_____.
13、若,则
=_________.
14、如图,直线y=x与双曲线y=
(k>0,x>0)交于点A,将直线y=
x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=3BC,则k的值为____.
15、关于的反比例函数
(
为常数),当x>0时,
随
的增大而减小,则
的取值范围为__________.
16、函数的定义域是______.
17、解方程:
(1) ;
(2).
18、先化简,再求值: ,其中
19、如图,反比例函数的图象的一支在平面直角坐标系中的位置如图所示,根据图象回答下列问题:
(1)图象的另一支在第 象限;在每个象限内,y随x的增大而 ;
(2)若此反比例函数的图象经过点(-2,3),求m的值.点A(-5,2)是否在这个函数图象上?点B(-3,4)呢?
20、如图,AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,BO=6,CO=8.
(1)判断△OBC的形状,并证明你的结论
(2)求BC的长
(3)求⊙O的半径OF的长.
21、综合与实践
背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4
,5
的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.
实践操作 如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.
第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.
第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.
第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.
问题解决
(1)请在图2中证明四边形AEFD是正方形.
(2)请在图4中判断NF与ND′的数量关系,并加以证明;
(3)请在图4中证明△AEN(3,4,5)型三角形;
探索发现
(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.
22、计算:(1) (2)
-4sin45º+(-2012)0;
23、如图是网格中由五个小正方形组成的图形,根据下列要求画图(涂上阴影).
(1)图①中,添加一块小正方形,使之成为轴对称图形,且有两条对称轴;
(2)图②中,添加一块小正方形,使之成为轴对称图形,且只有一条对称轴(画出一个即可).
24、某区八年级有3000名学生参加“爱我中华”知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了部分学生的得分进行统计.
成绩x(分) | 频数 | 频率 |
50≤x<60 | 10 | a |
60≤x<70 | 16 | 0.08 |
70≤x<80 | b | 0.20 |
请你根据以上的信息,回答下列问题:
(1) a= ,b= ;
(2) 在扇形统计图中,“成绩x满足50≤x<60”对应扇形的圆心角大小是 ;
(3) 若将得分转化为等级,规定:50≤x<60评为D,60≤x<70评为C,70≤x<90评为B,90≤x<100评为A.这次全区八年级参加竞赛的学生约有 学生参赛成绩被评为“B”?