1、如图,在平面直角坐标系中,△ABC顶点B的坐标为.若以原点O为位似中心,画△ABC的位似图形
,且
的坐标为
,则△ABC与
的相似比为( )
A.1:2
B.2:1
C.1:3
D.3:1
2、若△ABC∽△DEF,且相似比为3∶2,则△ABC与△DEF的对应高的比为( )
A. 3∶2 B. 3∶5 C. 9∶4 D. 4∶9
3、一个机器人在一条直线上移动,每次只能向左或向右移动一个单位长度,移动2次后它回到出发位置的概率等于( )
A.
B.
C.
D.
4、如图,在中,
其周长为20,
是
的内切圆,其半径为
,则
的外接圆半径为( )
A.7 B. C.
D.
5、新型冠状病毒非常小,其半径约为 0.00000016m,用科学记数法可以表示为( )
A.m
B.m
C.m
D.m
6、若(x+3)(x+n)=x2+mx-15,则m的值为( )
A.-2
B.2
C.5
D.-5
7、现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为ycm2的无盖的长方体盒子,则y与x之间的函数关系式为( )
A. y=x2-70x+1200 B. y=x2-140x+4800
C. y=4x2-280x+4800 D. y=4800-4x2
8、如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为( )
A. B.
C.
D.
9、实数m、n在数轴上对应的点的位置如下图所示,若mn<0,且|m|>|n|,则原点可能是( )
A.点
B.点
C.点
D.点
10、下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,逆时针旋转,要使这个
最小时,旋转后的图形也能与原图形完全重合,则这个图形是( )
A. B.
C.
D.
11、如图,在正方形中,对角线
,
相交于点
,点
是
的中点,连接
并延长交
于点
,将线段
绕点
逆时针旋转
得到
,连接
,点
为
的中点.连接
,则
的值为______.
12、如图1,在矩形中,
,
,E,F分别为
,
的中点,连接
.如图2,将
绕点A逆时针旋转角
,使
,连接
并延长交
于点H.则
的长为__________.
13、如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°.设BE=a,DC=b,那么AB=_____(用含a、b的式子表示AB).
14、(-2)2-2sin30° =_______.
15、已知点A(﹣5,m)、B(﹣3,n)都在二次函数yx2
的图象上,那么m、n的大小关系是:m_____n.(填“>”、“=”或“<”)
16、如图,四边形中,
,
,
,
,则线段
的长______.
17、(1)发现:如图①,点A为一动点,点B和点C为两个定点,且,
(
).
填空:当点位于_______时,线段
的长取得最小值,且最小值为_______(用含
的式子表示);
(2)如图②应用:点为线段
外一动点,且
,
,如图2分别以
、
为边作等边三角形
和等边三角形
,连接
、
.
①请找出图中与相等的线段,并说明理由;
②直接写出线段长的最小值.
(3)拓展:如图3,在平面直角坐标系中,点的坐标为
,点
为线段OB外一动点,且
,
,
,请求出
的最小值并直接写出点
的坐标.
18、小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.
(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)
(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是 .
19、(1)问题发现:如图1,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,则AB,AD,DC之间的数量关系为_______.
(2)问题探究:如图2,在四边形ABCD中,AB∥DC,E是BC的中点,点F是DC的延长线上一点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的数量关系,并证明你的结论;
(3)问题解决:如图3,AB∥CD,点E在线段BC上,且BE:EC=3:4.点F在线段AE上,且∠EFD =∠EAB,直接写出AB,DF,CD之间的数量关系.
20、在全民读书月活动中,某校随机抽样调查了一部分学生本学期计划购买课外书的费用情况,根据图中的相关信息,解答下面问题;
(1)这次调查获取的样本容量是________;
(2)由统计图可知,这次调查获取的样本数据的众数是________;中位数是________;
(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.
21、为了弘扬传统文化,提高学生文明意识,育红学校组织全校80个班级进行“诵经典,传文明”演讲赛,比赛后对各班成绩进行了整理,分成4个小组(x表示成绩,单位:分):A组:60≤x<70;B组:70≤x<80;C组:80≤x<90;D组:90≤x<100,并且绘制了如右不完整的扇形统计图.请根据图中信息,解答下列问题:
(1)求扇形统计图中,B组对应的圆心角是多少度?
(2)学校从D组中选取了2名男生和2名女生组成代表队参加了区级比赛,由于表现突出,被要求再从这4名学生中随机选取两名同学参加市级比赛,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.
22、解方程:.
23、配餐公司为某学校提供A、B、C三类午餐供师生选择,三类午餐每份的价格分别是:A餐5元,B餐6元,C餐8元.为做好下阶段的营销工作,配餐公司根据该校上周A、B、C三类午餐购买情况,将所得的数据处理后,制成统计表(如下左图);根据以往销售量与平均每份利润之间的关系,制成统计图(如下右图).
请根据以上信息,解答下列问题:
(1)该校师生上周购买午餐费用的众数是 元;
(2)配餐公司上周在该校销售B餐每份的利润大约是 元;
(3)请你计算配餐公司上周在该校销售午餐约盈利多少元.
24、小明登陆泰微课学习页面后,发现推荐的数学微课有四个,其中有两个等级为A,另外两个等级为B,如果小明点击微课学习是随机的,且每个微课只点击学习一次.
(1)求小明第一次点击学习的微课等级为A的概率;
(2)如果小明第一次点击的微课等级为A,小明继续点击学习两次,利用树状图或表格求三次点击学习中有两个等级为A的概率.