1、下列命题是真命题的是( ).
A.多边形的内角和为360°
B.二次函数的图象与
轴的交点的坐标为
C.若,则代数式
D.矩形的对角线互相垂直平分
2、函数y=中,自变量x的取值范围是( )
A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0
3、如图,正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()
A.8
B.
C.
D.10
4、如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正确结论的个数为( )
A. 5 B. 4 C. 3 D. 2
5、4的平方根是( )
A. B.
C. 2 D.
6、(3分)反比例函数的图象位于平面直角坐标系的( )
A.第一、三象限 B.第二、四象限 C.第一、二象限 D.第三、四象限
7、如图,在△ABC中,∠C=90°,AC=BC=4cm,M是AB的中点,点P、Q分别从A、C两点同时出发,以1cm/s的速度沿AC、CB方向均速运动,到点C、B时停止运动,设运动时间为,△PMQ的面积为S (cm2),则S (cm2)与
的函数关系可用图象表示为( )
A. B.
C.
D.
8、已知二次函数,一次函数
,
有下列结论:
①当时,
随
的增大而减小;
②二次函数的图象与
轴交点的坐标为
和
;
③当时,
;
④在实数范围内,对于的同一个值,这两个函数所对应的函数值
均成立,则
.
其中,正确结论的个数是( )
A.0 B.1 C.2 D.3
9、比较tan20°,tan50°,tan70°的大小,下列不等式正确的是( )
A. tan70°<tan50°<tan20° B. tan50°<tan20°<tan70°
C. tan20°<tan50°<tan70° D. tan20°<tan70°<tan50°
10、在Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )
A.sin B=
B.cos B=
C.tan B=
D.tan B=
11、如图,,
切
于
,
两点,若
,
的半径为6,则阴影部分的面积为__________.
12、“平行四边形的对角线互相垂直平分”是_____事件.(填“必然”“不可能”或“随机”)
13、由中国发起创立的“亚洲基础设施投资银行”的法定资本金为100 000 000 000美元,用科学计数法表示为______________美元.
14、如图,在矩形ABCD中,点E、F分别在AB、CD边上,AD=6,AB=8,将△CBE沿CE翻折,使B点的对应点B′刚好落在对角线AC上,将△ADF沿AF翻折,使D点的对应点D′也恰好落在对角线AC上,连接EF,则EF的长为________.
15、若,且
,则
16、如图,△ABC中,AB=AC,内切圆⊙O与边BC、AC、AB分别切于点D、E、F,若∠C=30°,CE=2,则AC=_____.
17、计算:.
18、(12分)如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.
(1)求抛物线的解析式.
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.
①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
19、如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°
(1) 若点C在优弧BD上,求∠ACD的大小
(2) 若点C在劣弧BD上,直接写出∠ACD的大小
20、如图,已知顶点为D的抛物线与x轴交于A(-1,0),C(3,0)两点,与y轴交于B点.
(1)求该抛物线的解析式及点D坐标;
(2)若点Q是该抛物线的对称轴上的一个动点,当AQ+QB最小时,直接写出直线AQ的函数解析式;
(3)若点P为抛物上的一个动点,且点P在x轴上方,过P作PK垂直x轴于点K,是否存在点P使得A,K,P三点形成的三角形与△DBC相似?如存在,求出点P的坐标,如不存在,请说明理由.
21、(1)计算∶
(2)化简:
22、如图,已知函数y=-x+b的图象与x轴、y轴分别交于点A,B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=-x+b和y=x的图象于点C,D.
(1)求点A的坐标;(2)若OB=CD,求a的值.
23、如图,抛物线的顶点为C,对称轴为直线
,且经过点A(3,-1),与y轴交于点B.
(1)求抛物线的解析式;
(2)判断△ABC的形状,并说明理由;
(3)经过点A的直线交抛物线于点P,交x轴于点Q,若,试求出点P的坐标.
24、先化简,再求值:(a﹣)÷
,其中a=-5.