2024-2025学年(上)南京八年级质量检测数学

一、选择题(共10题,共 50分)

1、某班从4名男生和2名女生中任选1人参加“我的数学故事”演讲比赛,则选中女生的概率是(       

A.

B.

C.

D.

2、用配方法解方程时,配方后所得的方程为(  )

A. B. C. D.

3、下列四个命题中,是真命题的是

度数相等的弧所对的圆周角相等;长度相等的弧的度数都相等;弦的垂直平分线经过圆心;相等的圆心角所对的两条弦相等.

A.   B. ①②   C. ①③   D. ①③④

4、如图,在中,点分别是边的中点.交点,接.下列结论:① ;② ;③ ;④.其中正确的个数有(  

A.1 B.2 C.3 D.4

5、如图,在△ABC中,DEBCADAB=2:3,则SADESABC=(       

A.4:15

B.2:3

C.4:9

D.4:25

6、把两条宽度都为的纸条交叉重叠放在一起,且它们的交角为,则它们重叠部分(图中阴影部分)的面积为(   ).

A. B.

C. D.

7、如图,在RtABC中,∠C=90°,∠ABC=30°,AC,将RtABC绕点A逆时针旋转得到RtAB'C',连接BB',则BB'的长度是(  )

A.1

B.3

C.

D.2

8、的值是(  )

A.

B.

C.1

D.

9、已知abc分别是三角形的三边,则方程的根的情况是( )

A.有两个不相等的实数根 B.有两个相等的实数根

C.没有实数根 D.无法判断

10、如图,直线l1l2,以直线l2上的点A为圆心.适当长为半径画弧,分别交直线l1l2于点BC,连接ABBC.若∠ACB=65°,则∠1的度数为( )

A.30°

B.40°

C.50°

D.60°

二、填空题(共6题,共 30分)

11、如图,抛物线与反比例函数的图象在第一象限交于点A轴与抛物线交于点B,则的面积为________

12、中,相交于点O,且,若,则的长为______

13、设a,b分别为一元二次方程x2+2x﹣2021=0的两个实数根,则a2+3a+b=________

14、已知二次函数图像上的两点,则的大小关系是______.

15、已知a、b是等腰ABC的底和腰长,若ab且a、b均是方程6x+8=0的解,则ABC的周长为______

 

16、已知关于x的一元二次方程的一个根是,则__________

三、解答题(共8题,共 40分)

17、如图,在矩形中,边中点,连接,过点作于点,交于点

(1)求证:

(2)若时,求的长度.

18、如图,已知一次函数与反比例函数的图象交于两点,连接OAOB

(1)求一次函数和反比例函数的表达式;

(2)求△AOB的面积;

(3)根据图象,请直接写出不等式的解集.

19、如图,在平面直角坐标系中,,过点轴的垂线,垂足为.轴的垂线,垂足为出发,沿轴正方向以每秒个单位长度运动;出发,沿轴正方向以每秒个单位长度运动;点出发,沿方向以每秒个单位长度运动.点运动到点,三点随之停止运动.设运动时间为.

(1)用含的代数式分别表示点,的坐标.

(2)与以点,,为顶点的三角形相似,的值.

20、如图是反比例函数 的图象.根据图象,回答下列问题:

(1)k 的取值范围是k>0还是k<0?说明理由;

(2)如果点A(-3,y1),B(-2 ,y2)是该函数图象上的两点,试比较y1y2的大小.

21、选用适当的方法解下列方程

(1)x4x3 =0   (2)3x-7x-6 =0 (3)

22、(1)计算:

(2)解方程:

23、如图,AB是⊙O的直径,弦DE垂直半径OAC为垂足,DE6,连接DB,过点EEMBD,交BA的延长线于点M

1)求的半径;

2)求证:EM是⊙O的切线;

3)若弦DF与直径AB相交于点P,当∠APD45°时,求图中阴影部分的面积.

24、如图是体育公园步道示意图.从A处和得点B在北偏东,测得点C在北偏东,在点C处测得点B在北偏西米.

(1)求步道的长度(结果保留根号);

(2)游客中心Q在点A的正东方向,步道与步道交于点P,测得,小明和爸爸分别从B处和A处同时出发去游客中心,小明跑步的速度是每分钟米,请计算说明爸爸的速度要达到每分钟多少米,他俩可同时到达游客中心.(结果精确到0.1)(参考数据:

查看答案
下载试卷