1、若等腰三角形的顶角度数是一个底角度数的4倍,则底角是( )
A.
B.
C.
D.
2、的平方根是( )
A.4
B.-4
C.2
D.±2
3、中华汉字博大精深,不仅有独特的形态美,其表意特征更使其具有极其深远的内涵和意蕴,在发展过程中凝聚了五千年文明的精华,反映出古人的信仰、道德至上、天人合一思想等多种信息,是我国传统文化和民族精神的重要载体.某校为了传承中华优秀传统文化,组织了一次全校1000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,学校随机抽取了其中200名学生的成绩进行统计分析,下列说法正确的是( )
A.这1000名学生的“汉字听写”大赛成绩的全体是总体
B.每个学生是个体
C.200名学生是总体的一个样本
D.样本容量是1000
4、如图,∠ABC=90°,∠C=15°,线段AC的垂直平分线DE交AC于D,交BC于E,D为垂足,CE=10cm,则AB=( )
A.4cm
B.5cm
C.6cm
D.不能确定
5、下列式子中,不属于分式的是( )
A.
B.
C.
D.
6、已知中,
所对的边分别是a、b、c,下列条件不能判断
是直角三角形的是( )
A.
B.
C.
D.
7、如图,菱形ABCD对角线AC、BD相交于点O,点E在AC上,,
,
,则DE的长为( )
A.
B.
C.
D.
8、已知A,B两点的坐标是A(5,a),B(b,4),若AB平行于x轴,且AB=3,则a+b的值为( )
A.6或9
B.6
C.9
D.6或12
9、下列各数中,是无理数的是( )
A.
B.
C.
D.
10、下列由左到右变形中,是因式分解的是( )
A.
B.
C.
D.
11、点关于
轴的对称点
的坐标为_______
12、如图,平行四边形ABCD中,AC与BD交于点O,AE⊥BD于E,BD=20,BE=7,AE=4,则AC的长等于__________.
13、如图,△ABC的角平分线AD、中线BE相交于点O,则①AO是△ABE的角平分线;②BO是△ABD的中线;③DE是△ADC的中线;④ED是△EBC的角平分线的结论中正确的有_________个.
14、如图,已知菱形ABCD的边长为2,∠A=45°,将菱形ABCD绕点A旋转45°,得到菱形,其中B、C、D的对应点分别是
,那么点
的距离为_____________.
15、在重庆一中举办的趣味运动会中,“抢种抢收”的比赛规则如下:全程50米直线跑道,在起点和终点之间,每隔10米放置一个小桶,共四个:参赛者用手托着放有4个乒乓球的盘子,在从起点跑到终点的过程中,将四个乒乓球依次放入4个小桶中(放入时间忽略不计),如果中途乒乓球掉出小桶,需要返回,将乒乓球放回桶中,率先到达终点者获胜.小明和小亮同时从起点处出发,以各自的速度匀速跑步前进,小明在放入第二个乒乓球后,乒乓球跳出了小桶,落在了第二个桶的旁边,且落地后不再移动,但他并未发现,继续向前跑了一段距离,被裁判员提醒后立即原速返回捡球,并迅速放回桶中(捡球时间忽略不计),为了赶超小亮,小明将速度提高了1m/s.小明和小亮之间的距离y(米)和出发的时间x(秒)之间的函数关系如图所示,则小明在掉出乒乓球后又继续跑了______米后开始返回.
16、已知实数a、b、c在数轴上的位置如图所示,化简=______.
17、的一个有理化因式是______.
18、有一个数值转换器,原理如图:当输入x为81时,输出的y的值是 .
19、如图,EF是的中位线,BD平分
交EF于D,若
,则
______.
20、关于x的不等式组有且只有三个整数解,求a的最大值是____________.
21、小亮早晨从家骑车到学校,先上坡后下坡,离家距离y(千米)与出发时间x(分)之间的函数关系如图所示.
(1)求出小亮下坡时y与x之间的函数表达式;
(2)当小亮骑车20分钟时,他离家多远?
22、某商店销售一台A型电脑销售利润为100元,销售一台B型电脑的销售利润为150元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
(1)求y关于x的函数解析式;
(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润为多少?
23、如图,在平面直角坐标系中有,
,
,求
,
两点的坐标.
24、如图1是某种双层圆柱形水槽的轴截面示意图,水槽下层有一块铁块立放其中(圆柱形铁块的下底面完全落在槽底面上).现将水槽上层的水,通过中间的圆孔匀速注入下层,水槽中上下层水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示,根据图象提供的信息,解答下列问题:
(1)读图并直接写出上层水起始的深度;
(2)注水多少时间,上下层的水一样深?
(3)若水槽底面积为24平方厘米(壁厚不计),求出铁块的体积.
25、已知,△ABC中,点D,E分别在边AB,BC上,BD=BE,连接CD.
(1)如图1,若∠CAD=∠CED=2∠ADC,求证:AD=DE;
(2)如图2,点F在AD上,连接EF,若∠CAD=∠AFE,∠CEF=2∠ADC,求证:AD=EF.