1、如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24cm,△OAB的周长是18cm,则EF的长为( )
A.6
B.3
C.4
D.2
2、将△ABC的三个顶点的横坐标乘以-1,纵坐标不变,则所得图形( )
A.与原图形关于x轴对称 B.与原图形关于y轴对称
C.与原图形关于原点对称 D.向y轴的负方向平移了一个单位
3、长为9,6,5,4的四根木条,选其中三根组成三角形,选法有( )
A.1种
B.2种
C.3种
D.4种
4、如图,等腰三角形中,
,
,
于
,则
等于( )
A.
B.
C.
D.
5、如图△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1∠A1BC与∠A1CD的平分线相交于点A2,依此类推,∠A4BC与∠A4CD的平分线相交于点A5,则∠A5的度数为( )
A.19.2°
B.8°
C.6°
D.3°
6、如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交于点C、点D.若DB=DC,则直线CD的函数解析式为( )
A.y=﹣2x+2
B.y=2x﹣2
C.y=﹣x﹣2
D.y=﹣2x﹣2
7、不等式组的解集在数轴上表示正确的是( )
A.
B.
C.
D.
8、将点沿
轴向左平移
个单位长度,再沿
轴向上平移
个单位长度后得到的点
的坐标为( )
A.
B.
C.
D.
9、下列选项中,是最简二次根式的是( )
A.
B.
C.
D.
10、下列命题的逆命题,是假命题的是( )
A.两直线平行,内错角相等
B.全等三角形的对应边相等
C.对顶角相等
D.有一个角为度的三角形是直角三角形
11、如图 ,矩形 ABCD 中,对角线 AC,BD 相交于点 O,若再补充一个条件就能使矩形 ABCD 成为正方形,则这个条件是 (只需填一个条件即可).
12、已知:平分
,
平分
,
于点
,
的周长是
,面积是
,则
的长是:_______.
13、将直线向下平移4个单位,所得到的直线的解析式为___.
14、如图,矩形OABC的顶点A,C的坐标分别是(4,0)和(0,2),反比例函数y= (x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为________.
15、如图,六边形ABCDEF是正六边形,若l1∥l2,则∠1﹣∠2=_____.
16、当________时,
的值最小.
17、在平面直角坐标系中,点P(2,3)与点P′(2a+b,a+2b)关于原点对称,则a-b的值为_________
18、计算:(1)______;(2)
__________.
19、不等式组的解集是_____.
20、已知等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角是_________.
21、如图,平行四边形ABCD中,AE⊥BD于点E,CF⊥BD于点F,连结AF、CE.
(1)求证:四边形AECF是平行四边形;
(2)若AB=6,AD=2,∠ABD=30°,求四边形AECF的面积.
22、如图,在△ABC中,AB=13,AC=23,点D在AC上,若BD=CD=10,AE平分∠BAC.
(1)求AE的长;
(2)若F是BC中点,求线段EF的长.
23、已知一次函数和
.
(1)在同一直角坐标系内,画出这两个函数的大致图象;
(2)直接写出:①函数与坐标轴围成的图形的面积为_______;
②函数与坐标轴围成的图形的面积为________;
③这两个函数图象与轴围成的图形的面积为_________.
(3)若反比例函数经过这两个函数图象的交点,则k的值为______.
24、已知直线 y=kx+b(k≠0)过点 F(0,1),与抛物线 相交于B、C 两点
(1)如图 1,当点 C 的横坐标为 1 时,求直线 BC 的解析式;
(2)在(1)的条件下,点 M 是直线 BC 上一动点,过点 M 作 y 轴的平行线,与抛物线交于点 D, 是否存在这样的点 M,使得以 M、D、O、F 为顶点的四边形为平行四边形?若存在,求出点 M 的坐标;若不存在,请说明理由;
(3)如图 2,设 B(m,n)(m<0),过点 E(0,-1)的直线 l∥x 轴,BR⊥l 于 R,CS⊥l 于 S,连接 FR、FS.试判断△ RFS 的形状,并说明理由.
25、计算:
(1);
(2);
(3).