1、下列根式中,是二次根式的是( ).
A.π
B.
C.
D.
2、为了建设社会主义新农村,我市积极推进“行政村通畅工程”,对甲村和乙村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间道路的改造.下面能反映该工程改造道路里程(公里)与时间
(天)的函数关系大致的图像是( ).
A.
B.
C.
D.
3、用科学计算器求得271,315,263,289,300,277,286,293,297,280的平均数与方差(精确到0.1)分别为( )
A. 287.1,14.4 B. 287,14 C. 287,14.4 D. 14.4,287.1
4、函数y=中自变量x的取值范围是( )
A.x>1
B.x≥1
C.x≤1
D.x≠1
5、下列判断正确的是( )
A.对角线互相垂直的平行四边形是菱形
B.两组邻边相等的四边形是平行四边形
C.对角线相等的四边形是矩形
D.有一个角是直角的平行四边形是正方形
6、下列方程中,是一元二次方程的是( )
A. B.
C.
D.
7、“与5的和是正数且
的一半不大于3”用不等式组表示,正确的是
A. B.
C.
D.
8、计算的结果为( )
A.
B.
C.
D.
9、下列各式计算正确的是( )
A. B.
C.
D.
10、两条对角线相等且互相垂直平分的四边形是( )
A. 平行四边形 B. 矩形 C. 菱形 D. 正方形
11、实数a、b满足,则
的值为________
12、如图,中,
,
是
边上一点,
,
,
,则
的长为________.
13、若,则
的值为______________
14、如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________.
15、函数的图象如右图所示,则结论:
①两函数图象的交点的坐标为
; ②当
时,
;
③当时,
; ④当
逐渐增大时,
随着
的增大而增大,
随着
的增大而减小.
其中正确结论的序号是 .
【答案】①③④
【解析】试题分析:反比例函数与一次函数的交点问题.运用一次函数和反比例函数的性质来解决的一道常见的数形结合的函数试题.一次函数和反比例函数的交点坐标就是一次函数与反比例函数组成的方程组的解.根据k>0确定一次函数和反比例函数在第一象限的图象特征来确定其增减性;根据x=1时求出点B点C的坐标从而求出BC的值;当x=2时两个函数的函数值相等时根据图象求得x>2时y1>y2.
试题解析:①由一次函数与反比例函数的解析式,
解得, ,
∴A(2,2),故①正确;
②由图象得x>2时,y1>y2;故②错误;
③当x=1时,B(1,3),C(1,1),∴BC=3,故③正确;
④一次函数是增函数,y随x的增大而增大,反比例函数k>0,y随x的增大而减小.故④正确.
∴①③④正确.
考点:反比例函数与一次函数的交点问题.
【题型】填空题
【结束】
15
如图, △P1OA1与△P2A1A2是等腰直角三角形,点、
在函数
的图象上,斜边
、
都在
轴上,则点
的坐标是____________.
16、若函数是反比例函数,则
______.
17、三角形的三边长分别是3cm,5cm,6cm,则连结三边中点所围成的三角形的周长是_________cm.
18、如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则CD的长是_______.
19、如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是_____.
20、=______.
21、解不等式组.
22、如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD的面积.
23、如图,中,
,
(1)在上求作一点
,使
;(要求:尺规作图,保留作图痕迹,不写作法)
(2)在(1)的条件下,若,求
的面积。
24、2019 年 7 月 1 日,《上海市生活垃圾管理条例》正式实施,生活垃圾按照“可回收物”、 “有害垃圾”、“湿垃圾”、“干垃圾”的分类标准.没有垃圾分类和未指定投放到指定垃圾桶内等会被罚款和行政处罚.垃圾分类制度即将在全国范围内实施,很多商家推出售卖垃圾分类桶,某商店经销垃圾分类桶.现有如下信息:
信息 1:一个垃圾分类桶的售价比进价高 12 元;
信息 2:卖 3 个垃圾分类桶的费用可进货该垃圾分类桶 4 个;
请根据以上信息,解答下列问题:
(1)该商品的进价和售价各多少元?
(2)商店平均每天卖出垃圾分类桶 16 个.经调查发现,若销售单价每降低 1 元,每天可多售出 2 个.为了使每天获取更大的利润,垃圾分类桶的售价为多少元时,商店每天获取的利润最大?每天的最大利润是多少?
25、如图,在△ABC中,BD是∠ABC的角平分线,DE//BC,交AB于E,∠A=55°,∠BDC=95°,求△BDE各内角的度数.