1、如图,在▱ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF一定是平行四边形的是( )
A.AE=CF
B.DE=BF
C.∠ADE=∠CBF
D.∠AED=∠CFB
2、如图,在平行四边形ABCD中,下列结论中错误的是( )
A. ∠1=∠2 B. AB⊥AC C. AB=CD D. ∠BAD+∠ABC=180°
3、小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是( )
A.小明看报用时8分钟
B.公共阅报栏距小明家200米
C.小明离家最远的距离为400米
D.小明从出发到回家共用时16分钟
4、掷一枚普通的正六面体骰子,出现的点数中,以下结果机会最大的是( )
A.点数为的倍数
B.点数为奇数
C.点数不小于
D.点数不大于
5、如图,长方形纸片ABCD中,AB=3cm,AD=9cm,将此长方形纸片折叠,使点D与点B重合,点C落在点H的位置,折痕为EF,则△ABE的面积为( )
A.6cm2
B.8cm2
C.10cm2
D.12cm2
6、用配方法解方程2x2+3x﹣1=0,则方程可变形为( )
A. (x+3)2= B. (x+
)2=
C. (3x+1)2=1 D. (x+
)2=
7、与不是同类次根式的是( )
A.
B.
C.
D.
8、如图,在中,
,
,则
的度数是( )
A. B.
C.
D.
9、计算=( )
A. B.
C.
D.
10、在平行四边形中,对角线
、
相交于点
,若
,则
=( )
A. B.
C.
D.
11、命题“对角线相等的四边形是矩形”的逆命题是_____________.
12、如图所示,将矩形ABCD对折,设折痕为MN,再把B点叠在折痕MN上(如图点B′),若AB=,则折痕AE的长为__________;
13、如图,在四边形ABCD中,分别为线段
上的动点(含端点,但点M不与点B重合),E、F分别为
的中点,若
,则EF长度的最大值为______.
14、某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对________道题,成绩才能在60分以上.
15、边长为的正方形ABCD与直角三角板如图放置,延长CB与三角板的一条直角边相交于点E,则四边形AECF的面积为________.
16、在矩形ABCD中,点E、F分别在AB、AD上,CD=9,CE=20,∠EFB=2∠AFE=2∠BCE,则线段AF的长为_____.
17、若x2﹣mx+9是个完全平方式,则m的值是__.
18、如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上且A(﹣2,0),B(1.5,﹣2),则点D的坐标是__________.
19、已知中,
,点
为
边的中点,若
,则
长为__________.
20、如图所示,对四边形ABCD是平行四边形的下列判断,正确的打“√”,错误的打“×”.
(1)因为AD∥BC,AB=CD,所以ABCD是平行四边形.(____)
(2)因为AB∥CD,AD=BC,所以ABCD是平行四边形.(____)
(3)因为AD∥BC,AD=BC,所以ABCD是平行四边形.(____)
(4)因为AB∥CD,AD∥BC,所以ABCD是平行四边形.(____)
(5)因为AB=CD,AD=BC,所以ABCD是平行四边形.(____)
(6)因为AD=CD,AB=AC,所以ABCD是平行四边形.(____)
21、预防新型冠状病毒期间,某种消毒液A地需要8吨,B地需要10吨,正好甲仓库储备有12吨,乙仓库储备有6吨.市预防新型冠状病毒领导小组决定将这18吨消毒液调往A地和B地,消毒液的运费价格如表(单位:元/吨),设从甲仓库调运x吨到A地.
终点起点 | A地 | B地 |
甲仓库 | 150 | 160 |
乙仓库 | 40 | 80 |
(1)求调运18吨消毒液的总运费y关于x的函数表达式并求出x的取值范围;
(2)求出总运费最低的调运方案,最低运费为多少?
22、如图1,边长为的大正方形中有一个边长为
的小正方形(
),图2是由图1中阴影部分拼成的一个长方形.
(1)观察图1、图2,当用不同的方法表示图形中阴影部分的面积时,可以获得一个因式分解公式,则这个公式是_______;
(2)如果大正方形的边长比小正方形的边长
多3,它们的面积相差57,试利用(1)中的公式,求
,
的值.
23、A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?
24、如图,在正方形网格中每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.
(1)在网格中画出线段AC,使得AC=AB;
(2)在(1)的条件下画出以线段AC为一边,周长为10+2的平行四边形
25、某学校计划购买若干台电脑,现从两家商场了解到同一种型号的电脑报价均为6000元,并且多买都有一定的优惠.各商场的优惠条件如下表所示:
商场 | 优惠条件 |
甲商场 | 第一台按原价收费,其余的每台优惠25% |
乙商场 | 每台优惠20% |
(1)设学校购买台电脑,选择甲商场时,所需费用为
元,选择乙商场时,所需费用为
元,请分别求出
,
与
之间的关系式.
(2)什么情况下,两家商场的收费相同?什么情况下,到甲商场购买更优惠?什么情况下,到乙商场购买更优惠?
(3)现在因为急需,计划从甲乙两商场一共买入10台电脑,已知甲商场的运费为每台50元,乙商场的运费为每台60元,设总运费为元,从甲商场购买
台电脑,在甲商场的库存只有4台的情况下,怎样购买,总运费最少?最少运费是多少?