1、有理数中,绝对值最小的数是( )
A. -1 B. 1 C. 0 D. 不存在
2、一元二次方程x2+2x+2=0的根的情况是( )
A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 只有一个实数根 D. 没有实数根
3、2019年末,在中国武汉引发疫情的冠状病毒,被命名为新型冠状病毒,冠状病毒的平均直径约是0.00000009米,数据0.00000009科学记数法表示为( )
A. B.
C.
D.
4、下列图形中,是轴对称图形但不是中心对称图形的是( )
A.
B.
C.
D.
5、如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是( )
A.42° B.48° C.52° D.58°
考点:圆周角定理.
6、计算的结果等于( )
A.-4 B.4 C.12 D.-12
7、在一个纸箱中,装有红色、黄色、白色的塑料球共200个这些小球除颜色外其他都完全相同,将球充分摇匀后,从中随机摸出一个球,记下它的颜色后再放回箱中,不断重复这一过程,小明发现其中摸到白色球、黄色球的频率分别稳定在15%和45%,则这个纸箱中红色球的个数可能有( )
A. 30个 B. 80个 C. 90个 D. 120个
8、如图,某计算机中有、
、
三个按键,以下是这三个按键的功能.
(1).:将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下
后会变成7.
(2).:将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下
后会变成0.04.
(3).:将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下
后会变成36.
若荧幕显示的数为100时,小刘第一下按,第二下按
,第三下按
,之后以
、
、
的顺序轮流按,则当他按了第100下后荧幕显示的数是多少( )
A. 0.01 B. 0.1 C. 10 D. 100
9、反比例函数,当
时,
随
的增大而增大,则
的值是( )
A. B. 小于
的实数 C.
D.
10、反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为( )
A.1
B.﹣1
C.2
D.﹣2
11、一棵树因雪灾于A处折断,如图所示,测得树梢触地点B到树根C处的距离为4米,∠ABC约45°,树干AC垂直于地面,那么此树在未折断之前的高度约为________米(答案可保留根号)
12、小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:
步数(万步) | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 |
天数 | 3 | 7 | 5 | 12 | 3 |
在每天所走的步数这组数据中,中位数是______(万步).
13、若a为锐角,比较大小:sinα________tanα.
14、若,则
=_________.
15、半径为4 cm,圆心角为60°的扇形的面积为___cm2.
16、 如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为______cm.
17、如图,直线y=﹣x+6与反比例函数y=
(x>0)分别交于点D、A(AB<AC),经探索研究发现:结论AB=CD始终成立.另一直线y=mx(m>0)交线段BC于点E,交反比例函数y=
(x>0))图象于点F.
(1)当BC=5时:
①求反比例函数的解析式.
②若BE=3CE,求点F的坐标.
(2)当BE:CD=1:2时,请直接写出k与m的数量关系.
18、某校为了预测本校九年级男生毕业体育测试达标情况,随机抽取该年级部分男生进行了一次测试(满分50分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:
类(
),
类(
),
类(
),
类(
)绘制出如图所示的不完整条形统计图,请根据图中信息解答下列问题:
成绩等级 | 人数 | 所占百分比 |
| 10 | |
| 22 | |
| ||
| 3 |
(1)______,
_______,
_________;
(2)补全条形统计图;
(3)若该校九年级男生有600名,类为测试成绩不达标,请估计该校九年级男生毕业体育测试成绩能达标的有多少名?
19、如图,点P的对面是一面东西走向的墙,某人在点P观察一辆自西向东行驶的汽车AB,汽车的长为6米,根据图中标示的数据解决下列问题:
(1)画出此人在汽车与墙之间形成的盲区,并求出该盲区的面积;
(2)当汽车行驶到CD位置时,盲区的面积是否会发生变化?为什么?
20、已知抛物线的顶点
在
轴上.
(1)若点是抛物线最低点,且落在
轴正半轴上,直接写出
的取值范围;
(2),
是抛物线上两点,若
,则
;若
,则
,且当
的绝对值为4时,
为等腰直角三角形(其中
).
①求抛物线的解析式;
②设中点为
,若
,求点
纵坐标的最小值.
21、如图1是第七届国际数学教育大会(简称ICME﹣7)的会徽,会徽的主体图案是由如图2的一连串直角三角形演化而成的.其中OA1=A1A2=A2A3=…=A7A8=1,所以OA2=
把△OA1A2的面积记为,△OA2A3的面积
,△OA3A4的面积
,…如果把图2中的直角三角形继续作下去,请解答下列问题:
(1)请直接写出OAn= ,Sn= ;
(2)求出S12+S22+S32+…+S882的值.
22、已知:RT△ABC与RT△DEF中,∠ACB=∠EDF=90°,∠DEF=45°,EF=8cm,AC=16cm,BC=12cm.现将RT△ABC和RT△DEF按图1的方式摆放,使点C与点E重合,点B、C(E)、F在同一条直线上,并按如下方式运动.
运动一:如图2,△ABC从图1的位置出发,以1cm/s的速度沿EF方向向右匀速运动,DE与AC相交于点Q,当点Q与点D重合时暂停运动;
运动二:在运动一的基础上,如图3,RT△ABC绕着点C顺时针旋转,CA与DF交于点Q,CB与DE交于点P,此时点Q在DF上匀速运动,速度为cm/s,当QC⊥DF时暂停旋转;
运动三:在运动二的基础上,如图4,RT△ABC以1cm/s的速度沿EF向终点F匀速运动,直到点C与点F重合时为止.
设运动时间为t(s),中间的暂停不计时,
解答下列问题
(1)在RT△ABC从运动一到最后运动三结束时,整个过程共耗时 s;
(2)在整个运动过程中,设RT△ABC与RT△DEF的重叠部分的面积为S(cm2),求S与t之间的函数关系式,并直接写出自变量t的取值范围;
(3)在整个运动过程中,是否存在某一时刻,点Q正好在线段AB的中垂线上,若存在,求出此时t的值;若不存在,请说明理由.
23、如图,现有三张不透明的卡片,卡片的正面分别标有字母、
、
,每张卡片除字母不同之外,其余均相同.将三张卡片背面向上洗匀,从中随机抽取一张,记下字母后放回,重新洗匀,再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的字母相同的概率.
24、阅读下面材料:
上课时孙老师提出这样一个问题:对于任意实数,关于
的不等式
恒成立,求
的取值范围.
小明的思路是:原不等式等价于,设函数
,
,画出两个函数的图象的示意图,于是原问题转化为函数
的图象在
的图象上方时
的取值范围.
请结合小明的思路回答:
对于任意实数,关于
的不等式
恒成立,则
的取值范围是_____.
参考小明思考问题的方法,解决问题:
关于的方程
在
范围内有两个解,求
的取值范围.