1、如图,,点E在
上,
与
交于点F,若
,
,则
等于( )
A.1
B.
C.
D.
2、的值为( )
A.
B.
C.
D.
3、疫情其间,阳光小区在进行如何避免“新型冠状病毒”感染的宣传活动中,将以下几种注意事项写在条幅上进行张贴,内容分别是:①注意防寒保暖、室内通风和个人卫生;②加强体育锻炼;③保持清淡饮食;④避免到人群密集场所活动;⑤用肥皂和清水或含有酒精的洗手液洗手;⑥出门戴口罩.小雨从以上6张宣传标语中随机抽取一张进行张贴,恰好抽到③或④的概率是( )
A. B.
C.
D.
4、下列说法正确的是( )
A.相等的圆心角所对的弧相等
B.三角形的外心到三角形各边的距离相等
C.圆内接四边形的对角互余
D.三角形的外心到三角形各顶点的距离相等
5、如图所示的物体由两个紧靠在一起的圆柱体组成,它的俯视图是( )
A.
B.
C.
D.
6、下列图形中,为中心对称图形的是( )
A.
B.
C.
D.
7、如图下列条件不能判定的是( )
A.
B.
C.
D.
8、已知平行四边形ABCD中,添加下列条件,其中能说明平行四边形ABCD是矩形的是( )
A.
B.
C.
D.平分
9、在中,
,
,
,那么
的值等于( )
A.
B.
C.
D.
10、《海岛算经》是我国最早的一部测量数学专著,书中第一个问题的大意是:如图,要测量海岛上一座山峰的高度,立两根长度相等的标杆
和
,两杆之间的距离
步,
,
,
共线;从
到
走123步,此时A,
,
三点共线;从
到
走127步,此时A,
,
三点共线.计算山峰
的高度及
的长.若设
步,所列方程正确的是( )
A.
B.
C.
D.
11、如图,在△ABC中,点D,E分别在边AB,AC上,且DE∥BC,若S△ADE=S四边形DBCE,则=________.
12、如图,点D在的
边上,当
______时,
与
相似.
13、某化肥厂今年一月份化肥产量为4万吨,第一季度生产化肥13.2万吨,如果设二、三月平均增长率为x,那么依题意列方程为________.
14、分解因式:____________
15、方程x(x﹣2)+3(x﹣2)=0的解是_____.
16、已知函数y=﹣x2+2x﹣3,则y的最大值为_____.
17、如图,一次函数的图象与反比例函数
的图象交于第一象限
,
两点,与坐标轴交于
、
两点,连结
,
.
(1)求与
的函数解析式;
(2)将直线向上平移
个单位到直线
,此时,直线
上恰有一点
满足
,
,求
的值.
18、若,且
,求
的值.
19、如图,一次函数的图象与反比例函数
的图象相交于点
.
(1)求反比例函数和一次函数的解析式;
(2)请直接写出不等式的解集.
(3)若直线与
轴交于点
轴上是否存在一点
,使
?若存在,请求出点
坐标;若不存在,说明理由.
20、如图,矩形中,
,
,
是
上不与
和
重合的一动点,过点
分别作
和
的垂线,垂足为
,
;
的值是定值吗?如果不是,请说明理由;如果是定值请求出这个定值.
21、在平面直角坐标系中,抛物线
的顶点为A,
.
(1)若,
①点A到轴的距离为_______;
②求此抛物线与轴的两个交点之间的距离;
(2)已知点A到轴的距离为4,此抛物线与直线
的两个交点分别为
,
,其中
,若点
在此抛物线上,当
时,
总满足
,求
的值和
的取值范围.
22、如图,在△ABC中,∠C= 90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连接EF.
(1)求证:∠1= ∠F;
(2)若CD= 3,EF=,求⊙O的半径长.
23、抛物线C1:y=ax2+bx+3交x轴于A(﹣1,0),B(3,0),交y轴于C.
(1)求抛物线的解析式.
(2)如图1,抛物线的对称轴l交BC于M,交OB于N,点I为MN的中点.若抛物线上一点P关于点I的中心对称点Q正好落在坐标轴上,求点P的坐标;
(3)如图2,点G(﹣3,0),将抛物线C1平移得到抛物线C2,C2的顶点D始终在线段CG上,抛物线C2与x轴交与EF两点,过点D作DH垂直于x轴于点H,线段DH和EF之间存在怎样的数量关系?判断并说明理由.
24、用适当方法解下列方程: ;