1、以下列各组数为边长,能构成直角三角形的是( )
A.4、5、6
B.1、2、3
C.1、2、
D.1、3、5
2、将一个正方形纸片按如图1、图2依次对折后,再按如图3打出一个心形小孔,则展开铺平后的图案是( )
A. B.
C.
D.
3、如图,△APB与△CDP均为等边三角形,且PA⊥PD,PA=PD.有下列三个结论:①∠PBC=15°;②AD∥BC;③直线PC与AB垂直.其中正确的有( )
A. 0个 B. 1个 C. 2个 D. 3个
4、甲、乙两位老师在校门口给学生检测体温,已知每分钟甲比乙少检测5个学生,甲检测150个学生所用的时间与乙检测180个学生所用的时间相等.设甲每分钟检测x个学生,下列所列方程正确的是( )
A.
B.
C.
D.
5、下列命题中是真命题的是( )
A. 相等的角是对顶角 B. 相等的角的余角相等
C. 若,则
D. 若一个数带有根号,则它是无理数
6、化简的结果是( )
A. B.
C.0 D.
7、已知等腰三角形的底角为65°,则其顶角为( )
A.50° B.65° C.115° D.50°或65°
8、如图,等腰三角形ABC的底边BC为4,面积为24,腰AC的垂直平分线EF分别交边AC,AB于点E,F.若D为BC边的中点,M为线段EF上一动点,则的周长的最小值为( ).
A.8
B.10
C.125
D.14
9、代数式,
,
的公因式为( )
A. B.
C.
D.
10、在Rt△ABC中,∠C=90°,AC=3,AD平分∠BAC交BC边于点D,若AD=4,则点D到AB的距离是( )
A.
B.
C.5
D.3
11、已知有一个角为60°的等腰三角形的腰长为4,则这个等腰三角形的周长为 ___.
12、计算16a2b6÷8ab2=________.
13、如图,于E,AD平分
,
,
cm,
cm,则
______.
14、若x2+mx+n分解因式的结果是(x+2)(x﹣1),则m+n的值为_____.
15、如图,为线段
上一动点,分别过
,
作
,
,连接
,
,已知
,
,
,设
.请用含
的代数式表示
的长为_________,根据上述方法,求出
的最小值为_____.
16、如图,平行四边形ABCD中,E是AB上一点,DE、CE分别是∠ADC、∠BCD的平分线,若AD=5,则DE2+CE2= __________.
17、如图,在△ABC中,AD是它的角平分线,若S△ABD:S△ACD=3:2,则AB:AC=_______.
18、已知点与点
关于
轴对称,则点
的坐标为_________.
19、(﹣3×106)×(2×104)的值用科学记数法可表示为 ___.
20、(1)分式有意义的条件是__.
(2)分式的值为0的条件是__.
21、计算:
22、如图,AB=CD,BF⊥AC,DE⊥AC,AE=CF.求证:BD平分EF.
23、已知关于x的一元二次方程.
(1)判别方程根的情况,并说明理由.
(2)设该一元二次方程的两根为a, b,且a, b是矩形两条对角线的长,求矩形对角线的长.
24、计算:
(1);
(2).
25、教材中有如下一段文字:如图,把一长一短的两根木棍的一端固定在一起,摆出,固定住长木棍,转动短木棍,得到
.如图中的
与
满足两边和其中一边的对角分别相等,即
,
,
,但
与
不全等.
(1)思考:有两边和其中一边的对角分别相等的两个三角形_____.(填“一定全等”或“不一定全等”)
(2)小明通过对上述问题的再思考,提出:两边分别相等且这两边中较大边所对的角相等的两个三角形全等.请你判断小明的说法_____.(填“正确”或“不正确”)
请帮助小明完成证明过程:
如图,和
中,
,
,
,
,
,作
于
,
于
.
,
,
在和
中,
,
,
,
,
,
在和
中,
,
,
,
,
在和
中,
,
.(当
和
是锐角三角形时,证明方法类似).