1、下列计算正确的是( )
A.
B.
C.
D.
2、下列说法正确的是( )
A.角是轴对称图形,它的平分线就是它的对称轴
B.等腰三角形的内角平分线,中线和高三线合一
C.直角三角形不是轴对称图形
D.等边三角形有三条对称轴
3、函数中自变量x的取值范围是( )
A.x≠3
B.x≥2且x≠3
C.x≥2
D.x>2且x≠3
4、如图,4张边长分别为、
的长方形纸片围成一个正方形,从中可以得到的等式是( )
A.
B.
C.
D.
5、下列各式一定是二次根式的是( )
A.
B.
C.
D.
6、一部电影的票价为每张35元,某日共售出张该电影的电影票,票房收入为
元,在这个问题中,因变量是( )
A.35
B.和
C.
D.
7、下列四个图形中,不是轴对称图形的为( )
A.
B.
C.
D.
8、等腰三角形的顶角是,则这个三角形的一个底角的大小是( )
A.
B.
C.
D.
9、根据下图数字之间的规律,问号处应填( )
A.65
B.61
C.43
D.37
10、计算的结果是( )
A.
B.
C.
D.
11、甲乙两位同学参加跳远训练,在相同条件下各跳了6次,它们成绩的平均数满足,方差
,则成绩较稳定的同学是______________(填“甲”或“乙”).
12、给出下列分式:
(1),(2)
,(3)
,(4)
,(5)
其中最简分式有__.(填序号)
13、若m是方程的解,则
的值为 .
14、如图,,
,
m,则
,
两点间的距离为________m.
15、如图,在中,
,
是
的垂直平分线,
的周长为14,
,那么
的周长是__________.
16、在△ABC中,AB=13,BC=10,BC边上的中线AD=12.则AC=______.
17、在平行四边形ABCD中,若∠A:∠B=2:3,则∠C=______.
18、在正方形网格中,的位置如图所示,则点
中在
的平分线上是______________点.
19、点 A﹙-3,-5﹚关于 y 轴的对称点的坐标为_____________.
20、如图,△ABC中,AB=15,AC=13,点D是BC上一点,且AD=12,BD=9,点E、F分别是AB、AC的中点,则△DEF的周长是 .
21、在日历上,我们可以发现其中某些数满足一定的规律;如下图是2020年11月份的日历,我们任意用一个的方框框出4个数,将其中4个位置上的数交叉相乘,再用较大的积减去较小的积,你发现了什么规律?
(1)图中方框框出的4个数,按照题目所说的计算规则,结果为______.
(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.
22、如图,在平面直角坐标系中,,
,
点坐标为
,点
为
的中点,动点
从点
出发,以每秒
个单位的速度沿线段
向终点
运动,运动时间为
秒
,连接
,作点
关于直线
的对称点
.
(1)若点恰好落在
上,求
的值;
(2)若,求
的值;
(3)当时,
的度数是否会发生变化?若保持不变,请求出
的度数;若发生变化,请说明理由.
23、如图,网格中每个小正方形的边长都是1,ABC是格点三角形(三个顶点都是小正方形的顶点的三角形叫格点三角形)
(1)ABC的面积为 ;
(2)在图①中作出与ABC全等且AB为公共边的所有三角形;
(3)在图②中找出一格点P,使PAB为等腰三角形,这样格点共有 个.
24、计算:
(1);(2)
25、如图,是等腰直角三角形,P是直角边
上的一个动点,
于D,连接
,将线段
绕点D顺时针旋转90°至
,连接
.
(1)求证:.
(2)连接,若
;
①当时,求以
,
,
的长为三边构成的三角形的面积S的大小.
②当点P从点B运动到点C时,求点所经过的路程的值.