1、如图,在菱形ABCD中,BE⊥CD于E,AD=5,DE=1,则AE=( )
A.4 B.5 C. D.
2、数据:2,1,0,3,4的平均数是( )
A. 0 B. 1 C. 2 D. 3
3、下列运算错误的是( )
A. B.
C.
D.
4、已知边长为4的等边△ABC,D、E、F分别为边AB、BC、AC的中点,P为线段DE上一动点,则PF+PC的最小值为( )
A.4
B.
C.
D.
5、若一组数据的平均数为
,则这组数据的方差是( )
A. B.
C.
D.
6、25的算术平方根是
A.5
B.
C.
D.25
7、若有意义,则
的值是( )
A.非正数 B.负数 C.非负数 D.正数
8、下列说法,正确的是( )
A.有一个角是直角的四边形是矩形
B.两条对角线互相垂直的四边形是菱形
C.两条对角线相等的菱形是正方形
D.矩形、菱形都具有“对角线相等”的性质
9、五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,其中正确的是( )
A.
B.
C.
D.
10、下列图形中,是中心对称图形的是 ( )
A. B.
C.
D.
11、在平面直角坐标系中,把直线y=2x向下平移3个单位,所得直线的解析式__________________.
12、已知函数,那么自变量
的取值范围是__________.
13、如果点P(x,y)关于直线x=2的对称点是(﹣3,4),那么P点的坐标是_____
14、如图,□ABCD中,CE=DF,则四边形ABEF是________________.
15、如图,在直角中,已知
,
边的垂直平分线交
于点
,交
于点
,且
,
,则
的长是_______
.
16、已知P(a,b)是直线上的点,则4b-2a+3的值为_______.
17、如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=___度.
18、已知一个梯形的中位线长为5,其中一条底边的长为6
,那么该梯形的另一条底边的长是__________
.
19、若A(-1,y1)、B(-2,y2)是反比例函数y=(m为常数,m≠
)图象上的两点,且y1>y2,则m的取值范围是_____________.
20、把二次方程化成两个一次方程,所得到的两个一次方程是________和________
21、化简:
22、某校八年级同学参加社会实践活动,到“庐江台湾农民创业园”了解大棚蔬菜生长情况.他们分两组对西红柿的长势进行观察测量,分别收集到10株西红柿的高度,记录如下(单位:厘米)
第一组:32 39 45 55 60 54 60 28 56 41
第二组:51 56 44 46 40 53 37 47 50 46
根据以上数据,回答下列问题:
(1)第一组这10株西红柿高度的平均数是 ,中位数是 ,众数是 .
(2)小明同学计算出第一组方差为S12=122.2,请你计算第二组方差,并说明哪一组西红柿长势比较整齐.
23、在平面直角坐标系中,过点P(0,a)作直线l分别交(m>0、x>0)、
(n<0、x<0)于点M、N,
(1)若m=2,MN∥x轴,=6,求n的值;
(2)若a=5,PM=PN,点M的横坐标为4,求m-n的值;
(3)如图,若m=4,n=-6,点A(d,0)为x轴的负半轴上一点,B为x轴上点A右侧一点,AB=4,以AB为一边向上作正方形ABCD,若正方形ABCD与(m>0、x>0)、
(n<0、x<0)都有交点,求d的范围.
24、如图,一只蚂蚁从点A沿数轴向右直爬2个单位长度到达点B,点A表示-,设点B所表示的数为m.
(1)求m的值;
(2)求|m-1|+(m+)2的值.
25、小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,解答下列问题:
(1)放入一个小球量筒中水面升高 ;
(2)直接写出放入小球后量筒中水面的高度与放入小球个数
(个)之间的函数关系式(不需要写出自变量的取值范围),并求出当
时
的值;
(3)量筒中至少放入几个小球时有水溢出?