金昌2024-2025学年第二学期期末教学质量检测试题(卷)初一数学

一、选择题(共12题,共 60分)

1、a满足以下说法:a是无理数;是整数,那么a可能是(   )

A. B. C. D.

2、溉澜溪体育公园要种植一块三角形草坪,其两边长分别是30米和50米,那么草坪的第三边长不可能是(  

A.20 B.30 C.40 D.50

3、下列说法:①若,则 ②如果abbc,那么ac;③当x为任意有理数时,的值一定大于1;④方程有无数个整数解.其中正确的有(  

A. 1 B. 2 C. 3 D. 4

4、观察式子:、…,请你判断的结果的个位数是(  

A. B. C. D.

5、下列说法正确的是(  )

A. 随机事件发生的可能性是50%

B. 确定事件发生的可能性是1

C. 为了了解岳阳5万名学生中考数学成绩,可以从中抽取10名学生作为样本

D. 确定事件发生的可能性是01

6、下列说法中,正确的是(  

A.对顶角相等 B.内错角相等 C.锐角相等 D.同位角相等

7、不等式组的解集在数轴上表示正确的是(  

A. B.

C. D.

8、三个二元一次方程有公共解,则的值是(  )

A.3 B. C.2 D.4

9、方程5+3x=0的解是(       

A.

B.

C.

D.

10、如图,直线ab相交于点O,若∠1等于45°,则∠2等于(  

A.45° B.135° C.115° D.55°

11、一个事件的概率不可能是(

A.1 B.0 C. D.

12、如图,已知相交,若,则的度数等于(

A. B. C. D.

二、填空题(共8题,共 40分)

13、如图,是可以自由转动的一个转盘,转动这个转盘,当它停下时,指针落在标有号码 ________上的可能性最大.

14、在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(-4,-1)、N(0,1),将线段MN平移后得到线段M ′N ′(点M、N分别平移到点M ′、N ′的位置),若点M ′的坐标为(-2,2),则点N ′的坐标为_________

15、已知已知是方程组的解,则(mn)2_____

16、将三角形、菱形、正方形、圆四种图形(大小不计)组合如下图,观察并思考最后一图对应的数为_______

   

17、已知方程xy=2,用含y的代数式表示x____________

18、若a是介于之间的整数,b是的小数部分,则ab-2的值为_________

19、已知是二元一次方程组的解,则mn的值是______

20、9张相同的片,每张片上分别写有1-9的自然数,从中任取张卡片,则抽到卡片上的数字是3的整数倍的概率为___.

三、解答题(共6题,共 30分)

21、1)先化简,再求值:,其中

2)若,求的值.

22、xm-n·x2n+1x11ym-1·y4-ny5,求mn2的值.

23、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)的顶点的坐标为的坐标为

1)请在如图所示的网格平面内作出平面直角坐标系;

2)将向右平移5个单位长度,向下平移2个单位长度,面出平移后的图形

3)计算的面积.

24、求下列各式中的值:

(1);(2);(3)

25、已知:点E、点G分别在直线AB、直线CD上,点F在两直线外,连接EF、FG

(1)如图1,ABCD,求证:∠AEF+FGC=EFG;

(2)若直线AB与直线CD不平行,连接EG,且EG同时平分∠BEF和∠FGD.

①如图2,请探究∠AEF、FGC、EFG之间的数量关系?并说明理由;

②如图3,AEF比∠FGC3倍多10°,FGC是∠EFG,则∠EFG=______°(直接写出答案).

26、如图 ,是由两个正方形组成的图形.

1)用图中所给的数字和字母列代数式表示出阴影部分的面积S.(结果要求化简)

2)当a4时,求阴影部分的面积.

查看答案
下载试卷