1、用计算器计算cos44°的结果(精确到0.01)是( )
A. 0.90 B. 0.72 C. 0.69 D. 0.66
2、用科学记数法表示0.0000061,结果是( )
A. B.
C.
D.
3、下列说法中,正确的是( )
A.“明天降雨的概率是80%”表示明天有80%的时间在降雨
B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上
C.“彩票中奖的概率是1%表示买100张彩票一定有1张会中奖
D.在同一年出生的367名学生中,至少有两人的生日是同一天
4、掷一枚质地均匀的硬币6次,下列说法正确的是( )
A.必有3次正面朝上
B.可能有3次正面朝上
C.至少有1次正面朝上
D.不可能有6次正面朝上
5、下列计算正确的是( )
A.a2+a3=a5 B.a2•a3=a6
C.(a2)3=a5 D.a5÷a2=a3
6、下列计算正确的是( )
A.﹣x2﹣3x=﹣4x
B.2x×4x3=8x4
C.(﹣a2b)3=a6b3
D.a2b÷(﹣ab2)=﹣ab
7、抛物线的顶点坐标是( )
A. B.
C.
D.
8、在平面直角坐标系中,已知点,
,下列y关于x的函数中,函数图象可能同时经过A,B两点的是( )
A.
B.
C.
D.
9、甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差S甲2=0.006,乙10次立定跳远成绩的方差S乙2=0.035,则( )
A.甲的成绩比乙的成绩稳定
B.乙的成绩比甲的成绩稳定
C.甲、乙两人的成绩一样稳定
D.甲、乙两人成绩的稳定性不能比较
10、如图,在中,
,
于点
,下列各组线段的比不能表示
的是( )
A.
B.
C.
D.
11、把方程x2-2x-4=0用配方法化为(x+m)2=n的形式,则m=_______,n=________.
12、在直角三角形ABC中,∠C=90°,CD是AB上的中线,如果CD=2,那么AB=_____.
13、锐角A满足2sin (A-15°)=,则∠A=______________.
14、计算:__________.
15、如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.
16、如图,点D、E分别是△ABC的边AC、BC上的点,AD=DE,AB=BE,∠A=80°,则∠BED=____°.
17、一轮船在P处测得灯塔A在正北方向,灯塔B在南偏东30°方向,轮船向正东航行了900m,到达Q处,测得A位于北偏西60°方向,B位于南偏西30°方向.
(1)线段BQ与PQ是否相等?请说明理由;
(2)求A、B间的距离(结果保留根号).
18、疫情发生后,口罩成了人们生活的必需品.某药店销售A,B两种口罩,今年3月份的进价如下表:
| A种口罩 | B种口罩 |
进价(元/包) | 12 | 28 |
售价(元/包) |
|
|
已知B种口罩每包售价比A种口罩贵20元,9包A种口罩和4包B种口罩总售价相同.
(1)求A种口罩和B种口罩每包售价.
(2)若该药店3月份购进A种和B种口罩共1500包进行销售,且B种口罩数量不超过A种口罩的,如果所进口罩全部售出,应该购进A种口罩多少包,才能使利润最大,并求出最大利润.
(3)为满足不同顾客的需求,该药店准备4月份新增购进进价为每包10元的C种口罩,A种和B种口罩仍按需购进,进价与3月份相同,A种口罩的数量是B种口罩的4倍,共花费12000元,则该店至少可以购进三种口罩共多少包?
19、速滑运动受到许多年轻人的喜爱,如图,梯形BCDG是某速滑场馆建造的速滑台,已知CD∥EG,高DG为4米,且坡面BC的坡度为1:1.后来为了提高安全性,决定降低坡度,改造后的新坡面AC的坡度为1:.
(1)求新坡面AC的坡角;
(2)原坡面底部BG的正前方10米(EB的长)处是护墙EF,为保证安全,体育管理部门规定,坡面底部至少距护墙7米.请问新的设计方案能否通过,试说明理由.(参考数据:≈1.73)
20、如图,是一个破损的机器部件,它的残留边缘是圆弧,请作图找出圆心(用尺规作图,保留作图痕迹,写出作法,不用证明).
21、六月是水蜜桃大量上市的季节,某果农在销售时发现:若水蜜桃的售价为15元/千克,则日销售量为50千克,若售价每提高1元/千克,日销售量就减少2千克,现设水蜜桃售价为x元/千克(x≥15,且x为正整数).
(1)若某日销售量为40千克,则该日水蜜桃的单价为多少元?
(2)若政府将销售价格定为不超过30元/千克,设每日销售额为W元,求W关于x的函数表达式,并求W的最大值和最小值;
(3)为更好地促进果农的种植积极性,市政府加大对果农的补贴,每日给果农补贴a元后(a为正整数),果农发现最大日收入(日收入=销售额+政府补贴)还是不超过910元,并且只有5种不同的单价使日收入不少于900元,请直接写出所有符合题意的a的值.
22、问题背景:
图1,等腰△ABC中,AB=AC,∠BAC=120°,过点A作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°;于是
=
=
;
(1)迁移应用:
如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.求证:CD=AD+BD;
(2)拓展延伸
如图图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.若AE=5,CE=2,求BF的长.
23、有四张完全一样的白色硬纸片,每张纸片的其中一个面上写有一个数字,它们分别是 2、-1、0、-2.小华把这四张纸片写有数字的一面朝下洗匀,随机抽出一张记下数字;将抽出的纸片数字朝下放回,洗匀后再随机抽出一张记下数字.求小华两次记下的数字之和是正数的概率.(用树状图或列表法求解)
24、在学习“用直尺和圆规作射线OC,使它平分∠AOB”时,教科书介绍如下:
*作法:(1)以O为圆心,任意长为半径作弧,交OA于D,交OB于E;
(2)分别以D,E为圆心,以大于DE的同样长为半径作弧,两弧交于点C ;
(3)作射线OC.则OC就是所求作的射线.
小明同学想知道为什么这样做,所得到射线OC就是∠AOB的平分线.
小华的思路是连接DC、EC,可证△ODC≌△OEC,就能得到∠AOC=∠BOC. 其中证明△ODC≌△OEC的理由是_______________________________________.