2025-2026学年(下)达州七年级质量检测数学

一、选择题(共12题,共 60分)

1、如图,已知直线AB∥CD∠GEB的平分线EFCD于点F∠1=42°,则∠2等于( )

A.138° B.142° C.148° D.159°

2、如图,量得直线l外一点P到l的距离PB的长为5cm,点A是直线l上的一点,那么线段PA的长不可能是(  )

A.15 cm

B.5.5cm

C.5cm

D.4cm

3、如图,给出下列条件:其①,②,③,④。能判断的是(  

A.①或④ B.②或③ C.①或③ D.②或④

4、 小明根据邻居家的故事写了一首小诗:儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.如果用纵轴y表示父亲与儿子行进中离家的距离,用横轴x表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是(  )

A. B. C. D.

5、下列选项中的车标图案可以看着是由“基本图案”经过平移得到的是(       

A.

B.

C.

D.

6、 ,则( )

A.   B.   C.   D.

7、下列等式:(1)ab=-(ab)(2)ab=-(-ba),(3)43x=-(3x4)(4)5(6x)30x,其中一定成立的等式的个数是( )

A.1 B.2 C.3 D.4

8、关于的两个方程的公共解是( 

A.   B.   C.   D.

9、手机上使用14nm芯片,1nm0.0000001cm,则14nm用科学记数法表示为(  )

A. 1.4×106cm B. 1.4×107cm C. 14×106cm D. 14×107cm

10、下列由左到右边的变形中,是因式分解的是(  )

A.(x+2)(x﹣2)=x2﹣4

B.x2﹣1=

C.x2﹣4+3x=(x+2)(x﹣2)+3x

D.x2﹣4=(x+2)(x﹣2)

11、下列各组线段中能组成三角形的是(  )

A. a=3 cm,b=8 cm,c=5 cm

B. a=5 cm,b=5 cm,c=10 cm

C. a=12 cm,b=5 cm,c=6 cm

D. a=15 cm,b=10 cm,c=7 cm

12、如图,直线ab都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断ab的条件是(       

A.①③

B.②④

C.①③④

D.①②③④

二、填空题(共8题,共 40分)

13、已知,则的值为__________

14、已知,则____________.

15、________________都能够反映每个对象出现的频繁程度;________表示每个对象出现的次数与总次数的比值.

16、如图,已知∠1+∠2=100°,则∠3=____

   

17、有一种数字游戏,

可以产生黑洞数,操作步骤如下:

第一步,任意写出一个自然数(以下称为原数)

第二步,再写一个新的三位数.它的百位数字是原数中偶数数字的个数,十位数字是原数中奇数数字的个数,个位数字是原数的位数;

以下每一步,都对上一步得到的数,按照第二步的规则继续操作,直至这个数不再变化为止.不管你开始写的是一个什么数,几步之后变成的自然数总是相同的.最后这个相同的数就叫它为黑洞数.请你以2019为例尝试一下,黑洞数____

18、如图,一块边长为8米的正方形土地,在上面修了三条道路,宽都是1米,其余部分种上各种花草,则种植花草的面积是____平方米.

19、单项选择题是数学试题的重要组成部分,当你遇到不懂做的情况时,如果你随便选一个答案(假设每个题目有4个备选答案),那么你答对的可能性为   .

20、张亮和朋友们聚会,准备在方糖KTV的一间包厢里连续欢唱6小时,图为方糖KTV的两种计费方案,张亮通过计算发现包厢计费方案比人数计费方案省钱, 则参加这次聚会至少有___________人.

方糖KTV

包厢计费方案:

包厢每间每小时100元 ;

每人须另付入场费20元 .

人数计费方案:

3小时内(含3小时)每人50元;

接着续唱每人每小时10元.

(不足1小时按1小时计)

 

 

三、解答题(共6题,共 30分)

21、如图,四边形 ABCD 中,AEDF 分别是∠BAD,∠ADC 的平分线,且 AEDF 于点 O 延长 DF AB 的延长线于点

1)求证:ABDC 

2)若∠MBC=120°,∠BAD=108°,求∠C,∠DFE 的度数.

22、在平面直角坐标系内,已知A(2x,3x+1).   

(1)点A在x轴下方,在y轴的左侧,且到两坐标轴的距离相等,求x的值;   

(2)若x=1,点B在x轴上,且SOAB=6,求点B的坐标.

23、解不等式组,请结合题意填空,完成本题的解答.

(1)解不等式①,得

(2)解不等式②,得

(3)把不等式①和②的解集在数轴上表示出来:

(4)原不等式组的解集为

24、(本题共有2小题,每题4分,共8) 计算:

(1) (2)

25、如图,三角形是三角形经过某种变换后得到的图形,分别写出点与点,点与点,点与点的坐标,并观察它们之间的关系.三角形内任意一点的坐标为,点经过这种变换后得到点,点的坐标是什么?

26、如图,在中,延长到点延长到点连接使

满足何种数量关系时,?并说明理由.

若点的中点,恰好有的度数.

查看答案
下载试卷