1、如图,直线y=kx+b交坐标轴于A(﹣2,0),B(0,3)两点,则不等式kx+b>0的解集是
A.x>3
B.﹣2<x<3
C.x<﹣2
D.x>﹣2
2、如图,点A在平行四边形的对角线上,试判断与
之间的大小关系( )
A. =
B.
>
C.
<
D. 无法确定
3、两个不相等的实数m,n满足,则mn的值为( )
A.6 B.-6 C.5 D.-5
4、下列各式正确的是( )
A. B.
C.
D.
5、下列运算正确的是( )
A.a a
a
B.(a
)
a
C.a
a
a
D.( bc)
b
c
6、关于的一元二次方程
有两个不相等的实数根,则
的取值范围是( )
A. B.
C.
且
D.
且
7、已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是( )
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
8、在直角坐标系内,点 P(﹣3,5)关于 x 轴的对称点 P1 的坐标为( )
A.(3,﹣5) B.(3,5) C.(﹣3,5) D.(﹣3,﹣5)
9、如果把分式中x、y的值都扩大为原来的2倍,则分式的值( )
A.扩大为原来的4 倍
B.扩大为原来的2倍
C.不变
D.缩小为原来的
10、若关于x的方程两根异号,则a的取值范围是( )
A.
B.
C.
D.
11、如图,在中,
,
,
,
,
分别为
,
,
的中点,
,则
的长度为__.
12、如图,在正方形ABCD中,F是对角线AC上的一点,点E在BC的延长线上,且BF=EF.则下列说法:①BF=DF;②△ADF≌△ABF;③DG=GE;④S△BCF=S△DCF;⑤∠DFE=90°其中正确的是_______(填序号).
13、已知分式方程+
=
,设
,那么原方程可以变形为__________
14、若最简二次根式与
是同类二次根式,则
__________.
15、甲、乙、丙、丁是四个不同平台的外卖员,每配送一单即可获得相应配送费且均为整数.已知乙每一单的配送费为甲的两倍,丁每一单的配送费为丙的两倍.12月第一周,甲、乙、丙的配送量之比为,丁的配送量为100单,且他们共获得配送费3700元.第二周配送量增加,甲增加的配送量占乙、丙配送量之和的
,丙增加的配送量占甲、乙、丙增加的配送量之和的
,此时甲、乙的配送量之和为丙的配送量的
倍,丁的配送量增加60单,且他们共获得配送费7660元.若丁每单配送费高于4元且不超过8元,则第二周四位外卖员配送量之和为______单.
16、已知P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,若=
+2,且y2=y1-
,则这个反比例函数的表达式为____________.
17、将方程组: 转化成两个二元二次方程组分别是 ________和____________
18、已知a+a-1=3,则________
19、如图,在平面直角坐标系中,一次函数和函数
的图象交于A、B两点.利用函数图象直接写出不等式
的解集是____________.
20、解方程:,
_______.
21、已知:如图,直线y1=x+1在平面直角坐标系xOy中.
(1)在平面直角坐标系xOy中画出y2=﹣2x+4的图象;
(2)求y1与y2的交点坐标;
(3)根据图象直接写出当y1≥y2时,x的取值范围.
22、如图,在Rt△ABC中,∠C=90°,a+b=14,C=10,求Rt△ABC的面积.
23、近日,中国工程院院士、“杂交水稻之父”袁隆平团队选育培植的耐盐碱水稻(即海水稻)在山东青岛等六个试验基地开始春播育秧,预计今年的种植规模将超一万亩.已知去年某基地甲、乙两块实验田海水稻的总产量都是3600千克,乙实验田海水稻种植面积是甲实验田的,而乙实验田海水稻平均亩产量比甲多60千克.
(1)求甲、乙两块实验田种植海水稻的面积;
(2)经过科学家的努力,海水稻正从试验田走向餐桌,某电商新购进A、B两种包装的海水稻产品共50袋,其进价、标价及优惠方案如下表所示.若要保证这批海水稻产品全部售出后所得利润不少于1000元,该电商至少要购进A种包装的海水稻产品多少袋?
包装类型 | A | B |
进价(元/袋) | 100 | 30 |
标价(元/袋) | 150 | 50 |
优惠方案 | 全部九折 |
24、如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子的长为13米,此人以0.5米/秒的速度收绳,6秒后船移动到点
的位置,问船向岸边移动了大约多少米?(假设绳子是直的,结果精确到0.1米,参考数据:
,
)
25、分解因式:.