1、第二届中国际进口博览会于2019年11月10日闭幕,本届进博会意向成交约4979亿元人民币,比首届增长23%,将数据4979亿用科学记数法表示为( )
A. B.
C. D.
2、小亮同学假期中坚持体育锻炼,给自己制定了每天跳绳计划,如果每天比原计划多跳绳次,那么跳绳
次可以比原来少用
天,设原计划每天跳绳
次,根据题意列出的方程正确的是( )
A.
B.
C.
D.
3、如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为( )
A. 2cm B. cm C.
D.
4、如图,弧BE是半径为6的圆D的圆周,C点是
上的任意一点,△ABD是等边三角形,则四边形ABCD的周长P的取值范围是( )
A. 12<P≤18 B. 18<P≤24 C. 18<P≤18+6 D. 12<P≤12+6
5、一次函数与一次函数
关于直线
对称,则
、
分别为( )
A.,
B.
,
C.,
D.
,
6、如图,PA切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列结论中,错误的是( )
A. ∠1=∠2 B. PA=PB C. AB⊥OP D. =PC•PO
7、如图,把一个矩形分割成四个全等的小矩形,要使小矩形与原矩形相似,则原矩形的长与宽之比为( )
A.2:1
B.4:1
C.
D.1:2
8、如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )
A. B.
C.
D.
9、如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点,作BM⊥AE于点M,作KN⊥AE于点N,连结MO、NO,以下四个结论:①△OMN是等腰三角形;②tan∠OMN=;③BP=4PK;④PM•PA=3PD2,其中正确的是( )
A.①②③ B.①②④ C.①③④ D.②③④
10、下列运算正确的是( )
A.a﹣2÷a﹣1=a2
B.a﹣1×a2=a﹣2
C.(a﹣2)﹣1=a2
D.a﹣2+a﹣1=a﹣3
11、如图,如果AE∥BD,CD=20,CE=36,AC=27,那么BC=_____.
12、如图,在平面直角坐标系中,点A、B的坐标分别为(3,2)、(-1,0),若将线段BA绕点B顺时针旋转90°得到线段BA',则点A'的坐标为___.
13、如图,平面内将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,则∠1、∠2、∠3三个角存在的等量关系为________.
14、如果一条弧长等于,它的半径是
,那么这条弧所对的圆心角度数为________,圆心角增加
时,这条弧长________.
15、你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程即
为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是
,其中它又等于四个矩形的面积加上中间小正方形的面积,即
,据此易得
.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程
的正确构图是_____.(只填序号)
16、江苏扬州的旅游宣传口号是“诗画瘦西湖,人文古扬州.给你宁静,还你活力”.为了了解广大市民对这一旅游宣传口号的知晓率,应采用的合适的调查方式为_____.(填“普查”或“抽样调查”)
17、已知二次函数y=x2﹣(k+1)x+k2+1与x轴有交点.
(1)求k的取值范围;
(2)方程x2﹣(k+1)x+k2+1=0有两个实数根,分别为x1,x2,且方程x12+x22+15=6x1x2,求k的值,并写出y=x2﹣(k+1)x+
k2+1的代数解析式.
18、如图,在正方形的网格中,点A,B,C均在格点上,点P为线段与网格线的交点,仅用无刻度的直尺完成以下作图,画图过程用虚线表示.
(1)在图1中,将线段绕点A逆时针旋转
得到线段
;连接
交
于F,则
______
(2)在图2中,在线段上画点Q,连接
,使得
(3)在图3中,分别在线段,线段
上画M,N连接
,
,使得
最小.
19、一个三位正整数N,各个数位上的数字互不相同且都不为0,若从它的百位、十位、个位上的数字任意选择两个数字组成两位数,所有这些两位数的和等于这个三位数本身,则称这样的三位数N为“公主数”.例如:132,选择百位数字1和十位数字3所组成的两位数为:13和31,选择百位数字1和个位数字2组成的两位数为:12和21,选择十位数字3和个位数字2所组成的两位数为:32和23,因为13+31+12+21+32+23=132,所以132是“公主数”.一个三位正整数,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数为“伯伯数”.
(1)判断123是不是“公主数”?请说明理由.
(2)证明:当一个“伯伯数”是“公主数”时,则z=2x.
(3)若一个“伯伯数”与132的和能被13整除,求满足条件的所有“伯伯数”.
20、已知是半圆
的直径,点
是半圆
上的一个动点
不与点
、
重合
,联结
,以直线
为对称轴翻折
,将点
的对称点记为
,射线
交半圆
于点
,连接
.
(1)如图1,推断和
位置关系;
(2)如图2,当点与点
重合时,用
表示弧
的长;
(3)过点作射线
的垂线,垂足为
,连接
交
于
.当
,
时,求
的值.
21、直线y=x+b与双曲线y=都经过点A(2,3),直线y=x+b与x轴、y轴分别交于B、C两点.
(1)求直线和双曲线的函数关系式;
(2)求△AOB的面积.
22、已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求证:方程有两个不相等的实数根;
(2)若方程有一个根是5,求k的值.
23、如图,已知四边形ABCD内接于⊙O,A是弧BDC的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F,E,且弧BF=弧AD.
(1)求证:△ADC∽△EBA;
(2)如果AB=8,CD=5,求tan∠CAD的值.
24、计算:
(1)- (-2)2+(-0.1)0; (2)(x―2)2―(x+3)(x―1).