1、如图是一个圆柱体切割一部分后的几何体,则其左视图是( )
A. B.
C. D.
2、下列各式从左到右的变形中,是因式分解的是( )
A. B.(
C. D.
3、下列计算正确的是( )
A. B.
C. D.
4、由4个大小相同的小正方体搭成的如图所示的几何体,则这个几何体的左视图是( )
A.
B.
C.
D.
5、2019年第七届世界军人运动会(7thCISMMilitaryWorldGames)于2019年10月18日至27日在中国武汉举行,这是中国第一次承办综合性国际军事赛事,也是继北京奥运会后,中国举办的规模最大的国际体育盛会.某射击运动员在一次训练中射击了10次,成绩如图所示.下列结论中不正确的有( )个
①众数是8;②中位数是8;③平均数是8;④方差是1.6.
A.1 B.2 C.3 D.4
6、如图,在平面直角坐标系中,的直角顶点与原点
重合,顶点
的坐标为
,
,若顶点
在第一象限,则点
的坐标为( )
A. B.
C.
D.
7、下列图形中,不能通过其中一个阴影图形平移得到的是( )
A.
B.
C.
D.
8、为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图所示图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据,根据所测数据不能求出A,B间距离的是( )
A. BC,∠ACB B. DE,DC,BC C. EF,DE,BD D. CD,∠ACB,∠ADB
9、-2015的相反数是( )
A.-2015 B. C.2015 D.
10、如图,已知等腰直角三角形ABC中,∠ACB=90°,BC=1,在BC的延长线上任取一点P,过点P作PD⊥BC,使得PD=2PC,则当点P在BC延长线上向左移动时,△ABD的面积大小变化情况是( )
A. 一直变大 B. 一直变小 C. 先变小再变大 D. 先变大再变小
11、若反比例函数y=﹣的图象经过点A(m,3),则m的值是_____.
12、若数2,3,x,5,6五个数的平均数为4,则x的值为___.
13、在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有____个.
14、如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为________ .
15、《九章算术》原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?译文:现有一些人共买一个物品,每人出8钱,还盈余3钱;每人出7钱,则还差4钱,问共多少人,物品价格多少钱?设共有x人,物品的价格是y钱,则可列方程组为____________·
16、如果函数是反比例函数,那么k的值为________.
17、某中学艺术节期间,学校向学生征集书画作品,学校从全校30个班中随机抽取了4个班 (用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:
(1)请你将条形统计图补充完整,并估计全校共征集多少件作品?
(2)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.
18、如图,已知四边形,
,
,连接
,请用尺规作图法,在
边上求作一点P,使得
.(不写作法,保留作图痕迹)
19、解不等式组,并把不等式①和②的解集在数轴上表示出来.
20、解不等式:.
21、平面直角坐标系中,抛物线C1:y1=x2-2mx+2m2-1,抛物线C2:y2=x2-2nx+2n2-1,
(1)若m=2,过点A(0,7)作直线l垂直于y轴交抛物线C1于点B、C两点.
①求BC的长;
②若抛物线C2与直线l交于点E、F两点,若EF长大于BC的长,直接写出n的范围;
(2)若m+n=k(k是常数),
①若,试说明抛物线C1与抛物线C2的交点始终在定直线上;
②求y1+y2的最小值(用含k的代数式表示) .
22、计算:.
23、为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为多少米?(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)
24、(庆阳中考)现在的青少年由于沉迷电视、手机、网络游戏等,视力日渐减退,某市为了了解学生的视力变化情况,从全市九年级随机抽取了1 500名学生,统计了每个人连续三年视力检查的结果,根据视力在4.9以下的人数变化制成折线统计图,并对视力下降的主要因素进行调查,制成扇形统计图.
解答下列问题:
(1)图中D所在扇形的圆心角度数为______;
(2)若2016年全市共有30 000名九年级学生,请你估计视力在4.9以下的学生约有多少名?
(3)根据扇形统计图信息,你觉得中学生应该如何保护视力?