1、设(5a+3b) =(5a-3b)
+A,则A=( )
A. 30ab B. 60ab C. 15ab D. 12ab
2、某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,10,这组数据的中位数和众数分别是( )
A.10,12
B.12,11
C.11,12
D.12,12
3、函数的自变量x的取值范围是( )
A.x≠6
B.x≠0
C.x>6
D.x≥0
4、若关于的方程
没有实数根,则
的值可以是( ).
A.
B.
C.0
D.1
5、在平面直角坐标系中,有、
两点,则A与B关于( )
A.x轴对称 B.y轴对称 C.原点对称 D.直线对称
6、下列四组线段中,可以构成直角三角形的是( )
A. 4,5,6 B. 1.5,2,2.5 C. 2,3,4 D. ,
,
7、在中,
,
为
中点,连接
,
平分
交
与点
,若
则
( )
A. B.
C.
D.
8、在等腰中,
,
,
,点
在边
上,若
是直角三角形,则
的长度是( )
A.
B.或1
C.或
D.1或
9、甲乙两地相距400千米,一辆汽车从甲地开往乙地,实际每小时比原计划多行驶12km,结果提前1小时到达.设这辆汽车原计划的速度为x千米/时,根据题意可列方程为( )
A. =
+1
B. =
+1
C. +1=
D.+1 =
10、下列说法正确的是( )
(1)不等式与不等式
的解集相同;(2)三角形的三条高都在三角形的内部并交于一点;(3)如果关于
的不等式
可变形为
,那么
的取值范围是
;(4)把一根长11厘米的钢管截成3厘米长和1厘米长两种规格的钢管(两种都有),恰好没有剩余,有4种截法.
A.1个
B.2个
C.3个
D.4个
11、某商品由于连续两次降低成本,使成本比原来降低了,则平均每次降低成本_______(填百分数).
12、在△ABC中,AB=12,BC=16,AC=20,则△ABC的面积为________.
13、如图,点P,Q分别是菱形的边
、
上的两个动点,若线段
长的最大值为
,最小值为8,则菱形
的边长为________.
14、如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为______.
15、计算:=___.
16、等腰三角形一边长为1cm,另一边长为2cm,它的周长是______ cm.
17、已知 ,则m+n的值是_________
18、数学社团活动课上,甲乙两位同学玩数学游戏.游戏规则是:两人轮流对及
的对应边或对应角添加一组等量条件(点
,
,
分别是点A,B,C的对应点),某轮添加条件后,若能判定
与
全等,则当轮添加条件者失败,另一人获胜.
轮次 | 行动者 | 添加条件 |
1 | 甲 | |
2 | 乙 | |
3 | 甲 | … |
上表记录了两人游戏的部分过程,则下列说法正确的是___________.(填写所有正确结论的序号)
①若第3轮甲添加,则甲获胜;
②若第3轮甲添加,则甲必胜;
③若第2轮乙添加条件修改为,则乙必胜;
④若第2轮乙添加条件修改为,则此游戏最多4轮必分胜负.
19、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的面积为49,则正方形A、B、C、D的面积之和为_____.
20、已知点是一次函数
图象上任意一点,则
的值等于______.
21、材料阅读:在二次根式的运算中,经常会出现诸如,
的计算,需要运用分式的基本性质,将分母转化为有理数,这就是“分母有理化”,例如:
;
.类似地,将分子转化为有理数,就称为“分子有理化”,例如:
;
.根据上述知识,请你完成下列问题:
(1)运用分母有理化,化简:;
(2)运用分子有理化,比较与
的大小,并说明理由;
(3)计算:的值.
22、已知y+3与x成正比例,且当x=2时,y=1.
(1)求y与x的函数关系式;
(2)当y=﹣9时,求x的值.
23、解方程x﹣=
﹣1
24、某体育用品专卖店今年3月初用4000元购进了一批“中考体能测试专用绳”,上市后很快售完.该店于3月中旬又购进了和第一批数量相同的专用绳,由于第二批专用绳的进价每根比第一批提高了10元,结果进第二批专用绳共用了5000元.
(1)第一批专用绳每根的进货价是多少元?
(2)若第一批专用绳的售价是每根60元,为保证第二批专用绳的利润率不低于第一批的利润率,那么第二批专用绳每根售价至少是多少元?
(提示:利润=售价﹣进价,利润率=)
25、化简:()÷
,并解答:
(1)当x=1+时,求原代数式的值;
(2)原代数式的值能等于-1吗?为什么?