1、一元二次方程的根是( )
A.
B.
C.,
D.,
2、已知关于的方程
有两个不相等的实数根,则抛物线
的顶点在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3、如图,A,B两点的坐标分别是,
,抛物线的顶点在线段AB上运动,与x轴交于C,D两点(C在D的左侧),点C的最小值为
,则D点的横坐标的最大值是( )
A.1
B.3
C.5
D.6
4、在中,边
的长与
边上的高的和为8,当
面积最大时,则其周长的最小值为( )
A.
B.
C.
D.
5、若二次函数的图象的对称轴是经过点
且平行于
轴的直线,则关于
的方
的解为( )
A.,
B.,
C.,
D.,
6、如图,抛物线y=ax2+bx+c的对称轴为直线x=1,与x轴一个交点的坐标为(﹣1,0),其部分图像如图所示,下列结论:①ac<0;②b<0;③方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;④当y>0时,x的取值范围是﹣1<x<3.其中结论错误的是( )
A.①
B.②
C.③
D.④
7、在圆柱形油槽内装有一些油.截面如图,油面宽为
,如果再注入一些油后,油面
上升
,油面宽变为
,则该圆柱形油槽直径
为( )
A. B.
C.
D.
8、将抛物线向左平移2个单位后得到的抛物线的解析式为( )
A.y=3(x+2)2
B.y=3(x-2)2
C.y=3x2+2
D.y=3x2-2
9、某服装店五月份推出春装优惠活动.普通顾客打x折,VIP贵宾在打x折的基础上再打x折.已知一件原价500元的春装,VIP贵宾在优惠后实际仅需付320元,根据题意可列方程( )
A.
B.
C.
D.
10、如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),对称轴为x=1,给出四个结论:①b2-4ac>0;②2a+b=0;③a+b=0;④当x=-1或x=3时,函数y的值都等于0,其中正确结论是( )
A.②③④ B.①③④ C.①②③ D.①②④
11、方程的根是____________.
12、_________.
13、二次函数y=x2+6x+5图象的顶点坐标为__.
14、若关于x的方程有一个根是1,则a的值是______.
15、在△ABC中,点D在边AB上,点E在边AC上,且DE//BC,若△ADE的面积是四边形BCED的面积的2倍,则AD:AB=_______.
16、2021年,绥化市人口约为5210000人,用科学记数法表示为 _____.
17、解方程:.
18、如图,在单位长度为1的正方形网格中,一段圆弧经过格点A、B、C.
(1)画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连接AD、CD.
(2)请在(1)的基础上,完成下列问题:
①以点O为原点、水平方向所在直线为x轴、竖直方向所在直线为y轴,建立平面直角坐标系,写出点的坐标:C ,D ;
②⊙D的半径为 (结果保留根号);
③若用扇形ADC围成一个圆锥的侧面,则该圆锥的底面圆半径是 .
19、如图,抛物线交
轴于
、
两点,经过点
,交
轴于点
.
(1)求抛物线的解析式及点的坐标;
(2)求的面积;
(3)若点在直线
上,点
在平面上,是否存在这样的点
,使得以点
为顶点的四边形为菱形?若存在,请直接写出点
的坐标;若不存在,请说明理由.
20、先化简,再求值:,其中
.
21、如图,一条公路的转弯处是一段圆弧(图中的),点O是这段弧的圆心,C是
上一点,OC⊥AB,垂足为D,AB=300m,CD=50m,则这段弯路的半径是多少m.
22、如图,中,
,
,
,动点P从点A开始沿边
向点B以
的速度移动,动点Q从点B开始沿
向C点以
的速度移动,如果P、Q两点分别从A、B两点同时出发,当点Q运动到点C时,两点停止运动.设运动时间为x秒,四边形
的面积为
.
(1)求y与x之间的函数关系式和自变量x的取值范围;
(2)y的值能否取14?若能,求对应的x的值;若不能,请说明理由.
23、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:
(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?
(2)要使商场平均每天赢利最多,每件衬衫降价多少元?