1、在中,
,
为
的重心,若
,则
外接圆的半径为( )
A.
B.
C.
D.
2、如图,在正三棱柱中,若
,则
与
所成角的大小为( )
A.
B.
C.
D.
3、函数的定义域为( )
A. B.
C.
D.
4、已知角的顶点与平面直角坐标系的原点重合,始边与x轴的非负半轴重合,终边经过点
,则
的值是
A. B.
C.
D.
5、函数的单调递增区间是( )
A.
B.
C.
D.
6、下列各组集合中,满足E=F的是( )
A.,F={1.414}
B.
C.
D.
7、已知,则
的值为( )
A.
B.
C.6
D.
8、已知函数,若
,则函数
的值域为( )
A. B.
C.
D.
9、已知幂函数的图象经过点
,则
的值是( )
A. B.-1 C.
D.3
10、已知均为非零实数,则“
”是“关于
的不等式
与
解集相同”的( ) .
A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既不充分也不必要条件
11、下列函数中,既是奇函数,又是在区间(0,+∞)上递增的是( )
A. B.
C.
D.
12、已知,则
的大小关系是
A.
B.
C.
D.
13、若关于的不等式
对任意
在
上恒成立,则实数
的取值范围是__________.
14、已知集合,
,则
_____,
______.
15、已知函数没有零点,则a的一个取值为___________;a的取值范围是___________.
16、已知函数,
,则
的值域为_____.
17、已知定义在上的函数
满足
,且函数
在
上是减函数,若
,则
的大小关系为__________.
18、一组数据按从小到大的顺序排列为1,4,4,x,7,8(其中),若该组数据的中位数是众数的
倍,则该组数据的第60百分位数是__________.
19、某校举办运动会时,高一某班共有27名学生参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有4人,没有人同时参加三项比赛.则仅参加一项比赛的共有___________人.
20、若,
,则
__________.
21、已知,则
的最小值为___________.
22、设集合,
,且
,则实数
的取值范围是________.
23、已知,且
.
(1)求的值;
(2)求的值.
24、新冠肺炎疫情爆发以来,全国上下,齐心协力,众志成城,有直线铁路连接相距千米的两个城市
和
,为了充分保障居民物资供应,拟从铁路线
上的某一点
处筑一公路到物资供应点
.现测得
千米,
(如图).已知公路运费是铁路运费的
倍,设铁路运费为每千米
个单位,从
经
直接到
的总运费为
.为了求总运费
的最小值,设
.
(1)试将表示为
的函数关系式
;
(2)求出总运费的最小值.
25、已知函数的定义域为
,函数
的定义城为
.
(1)求集合、
.
(2)若,求实数
的取值范围.