1、如图,菱形ABCD中,点E,F分别是AC,DC的中点,若EF=3,则菱形ABCD的周长是( )
A.12
B.16
C.20
D.24
2、如图所示的运算程序中,如果开始输入的x值为,我们发现第1次输出的结果为
,第2次输出的结果为
,…,第2024次输出的结果为( )
A.
B.
C.
D.
3、下列运算正确的是( )
A.
B.
C.
D.
4、若单项式的系数、次数分别是
,则( )
A. B.
C.
D.
5、下列各组数中,能构成直角三角形的是( )
A.5,12,14
B.6,8,10
C.3,4,6
D.1,2,3
6、下面是由七巧板拼成的图形(只考虑外形,忽略内部轮廓),其中轴对称图形是( )
A.
B.
C.
D.
7、如图,图1是由个完全相同的正方体搭成的几何体,现将标有
的正方体平移至图2所示的位置,下列说法中正确的是( )
图1 图2
①左、右两个几何体的主视图相同
②左、右两个几何体的俯视图相同
③左、右两个几何体的左视图相同
A.①②③
B.②③
C.①②
D.①③
8、某种商品的进价为600元,出售时标价为900元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于,则最低可打( )
A.6折
B.7折
C.8折
D.9折
9、下列图形中与
是内错角的是
A. B.
C.
D.
10、下列函数中,属于二次函数的是( )
A. y=2x﹣1 B. y=x2+ C. y=x2(x+3) D. y=x(x+1)
11、计算:的结果是________.
12、已经RtABC的面积为
,斜边长为
,两直角边长分别为a,b.则代数式a3b+ab3的值为_____.
13、把多项式按
的升幂排列为__________.
14、如图,在菱形ABCD中,,则
___________度.
15、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的________.
16、正比例函数与反比例函数
的图像相交于A、B两点,已知点A的横坐标为1,当
时,x的取值范围是______.
17、如图所示,在△ABC中,CD⊥AB于D,AC=4,BC=3,CD=(1)求AD的长;(2)求证:△ABC是直角三角形.
18、解不等式组 ,并写出它的非负整数解.
19、二次函数的图象与
轴交于
两点,与
轴交于点
,顶点为
.
(1)求的值;
(2)如图①,是该二次函数图象的对称轴上一个动点,当
的垂直平分线恰好经过点
时,求点
的坐标;
(3)如图②,是该二次函数图象上的一个动点,连接
,取
中点
,连接
,当
的面积为
时,求点
的坐标.
20、如图所示,A(2,0),点 B 在 y 轴上,将三角形 OAB 沿 x 轴负方向平移,平移后的图形为三角形 DEC,且点 C 的坐标为(-6,4) .
(1)直接写出点 E 的坐标 ;
(2)在四边形 ABCD 中,点 P 从点 B 出发,沿“BC→CD”移动.若点 P 的速度为每秒 2 个单位长度, 运动时间为 t 秒,回答下列问题:
①求点 P 在运动过程中的坐标,(用含 t 的式子表示,写出过程);
②当 3 秒<t<5 秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问 x,y,z 之间的数量关系能否确定?若能,请用含 x,y 的式子表示 z,写出过程;若不能,说明理由.
21、因式分解:a(n-1)2-2a(n-1)+a.
22、计算:
23、对于一个三位数,如果
满足:它的百位数字、十位数字之和与个位数字的差等于
,那么称这个数
为“快乐数”.例如:
,
,
是“快乐数”;
,
,
不是“快乐数”.
(1)判断,
是否为“快乐数”?并说明理由;
(2)若将一个“快乐数”的个位数的
倍放到百位,原来的百位数变成十位数,原来的十位数变成个位数,得到一个新的三位数
(例如:若
,则
),若
也是一个“快乐数”,求满足条件的所有
的值.
24、如图,过A(0,6),B(6,0)两点的直线与直线y=x交于点F,平行于y轴的直线l从y轴出发,以每秒0.5个单位长度的速度沿x轴向右平移,到达F点时停止.直线l分别与AB,OF交于点C、D.以CD为斜边向左侧作等腰直角三角形,设
与
重叠部分图形的周长为p,直线l的运动时间为t秒.
(1)求直线AB的解析式及点F的坐标.
(2)当点E落在y轴上时,求p的值.
(3)试探究当直线l从y轴出发,向右移动过程中,p与t的函数关系式(直线l在y轴上与经过F点的两种情况不考虑).