西双版纳2025-2026学年第一学期期末教学质量检测试题(卷)高三数学

一、选择题(共10题,共 50分)

1、如图,由一个球体和一个长方体组成的几何体,从它的正面看得到的平面图形是(  )

A.

B.

C.

D.

2、如图所示,正方体的一个平面展开图上写下了“共建和谐社会”六个字,如果将其恢复为正方体,则“共”字所对的面上的字为(       

 

 

 

 

 

 

A.和

B.谐

C.社

D.会

3、x=2是关于x的一元一次方程ax2=b的解,则3b6a+2的值是( ).

A. 8 B. 4 C. 8 D. 4

4、二次函数的图象如图,则一元二次方程的根的情况是( )

A.有两个不相等的实数根

B.有两个相等的实数根

C.无实数根

D.无法确定

5、已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有2个,黑球有n个.随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.经过大量重复试验发现摸出白球的频率稳定在0.4附近,则n的值为( )

A.2

B.3

C.4

D.5

6、如果分式的值为,那么的值是(       

A.

B.

C.

D.

7、估计的值在(     )

A.5和6之间

B.4和5之间

C.3和4之间

D.2和3之间

8、周末,小明骑自行车从家里出发去游玩.从家出发1小时后到达迪诺水镇,游玩一段时间后按原速前往万达广场.小明离家1小时50分钟后,妈妈驾车沿相同路线前往万达广场.妈妈出发25分钟时,恰好在万达广场门口追上小明.如图是他们离家的路程ykm)与小明离家时间xh)的函数图象,则下列说法中正确的是(       

A.小明在迪诺水镇游玩1h后,经过h到达万达广场

B.小明的速度是20km/h,妈妈的速度是60km/h

C.万达广场离小明家26km

D.点C的坐标为(,25)

9、已知抛物线轴交于两点,则方程的解为(  

A. B. C. D.

10、下列数据是无理数的是( )

A.2 B. C. D.

二、填空题(共6题,共 30分)

11、如图,点内一点,分别作出点关于的对称点,连结,交,若线段的长为,则的周长为______

12、如图,正六边形ABCDEF内接于⊙O,连接BD.则∠CBD的度数是______________       

13、3×9m×27m321,则m____;若1284×832n,则n____

14、某轮船先顺水航行2小时,再逆水航行3小时,已知轮船在静水中速度是千米/小时,水流的速度是千米/小时,则轮船共航行_____________千米.

15、如图,RtABC中,∠ACB90°,AC8BC10,点PAC上一点,将△BCP沿直线BP翻折,点C落在C处,连接AC,若ACBC,那么CP的长为 ___

16、都是整数,且,则关于的大小关系为_____

三、解答题(共8题,共 40分)

17、如图,在四边形中,,过点,垂足为点,过点,垂足为点,且.

1)求证:

2)连接,且平分于点.求证:是等腰三角形.

18、图①、图②、图③均是的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点AB均在格点上:只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上.

(1)在图①中画一个,使其是轴对称图形且为锐角三角形.

(2)在图②中画一个四边形,使其是轴对称图形但不是中心对称图形.

(3)在图③中画一个四边形,使其是中心对称图形但不是轴对称图形,且四条边长均为无理数.

19、如图,点为原点,为数轴上两点,,且

1对应的数分别为____________

2)点分别以4个单位/秒和3个单位/秒的速度同时向右运动,点从原点7个单位/秒的速度向右运动,是否存在常数,使得为定值,若存在请求出值以及这个定值;若不存在,请说明理由.

20、计算:

(1)

(2)

21、如图,△ABC的顶点坐标为A(0,﹣2)B(3,﹣1)C(21)

1)请在图中画出△ABC关于y轴对称的图形△ABC

2)在y轴上找一点P,使PB+PC的值最小.(在坐标系中标出点P

22、已知点MNP是数轴上的三个点,点N对应的数是最小的正整数,点P的位置如图所示.

(1)线段的长度为___________.

(2)当时,请直接写出点M所表示的数.

(3)若点A从点N处出发,以每秒3个单位长度的速度向数轴正方向匀速运动;点B从点P处出发,以每秒1个单位长度的速度向数轴正方向匀速运动;点M从原点出发,以每秒2个单位长度的速度沿相同方向匀速运动,当点A与点B重合时,求线段的长度.

23、(1)为了计算的值,我们构造图形(图),共行,每行依次比上一行多一个点.此图形共有个点.如图2,添出图形的另一半,此时共列,有个点,由此可得

用此方法,可求得 (直接写结果).

(2)观察下面的点阵图(如图3),解答问题:

填空:①

(3)请构造一图形,求 (画出示意图,写出计算结果).

24、如图,ABAFAEAC,且∠1=∠2,求证:△ABC∽△AEF

查看答案
下载试卷