1、数字970000用科学记数法表示为
A.
B.
C.
D.
2、在平而直角坐标系中,点E在x轴上方,y轴的左侧,距离x轴3个单位,距离y轴4个单位,则E点的坐标为( )
A. (3,﹣4) B. (4,﹣3) C. (﹣4,3) D. (﹣3,4)
3、一种商品进价为每件80元,出售时标价为120元.后来由于商品积压,商店准备打折出售,但要保持毛利不低于5%,则至多可打( )
A.六折 B.七折 C.八折 D.八五折
4、三条线段长度分别为3、4、6,则以此三条线段为边所构成的三角形按角分类是 ( )
A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 根本无法确定
5、“400人中有两人的生日在同一天”这个事件是( )
A.必然事件 B.随机事件 C.不可能事件 D.都不是
6、如图,直线DE经过点A,DE∥BC,∠B=50°,下列结论成立的是( )
A. ∠C=50° B. ∠DAB=50° C. ∠EAC=50° D. ∠BAC=50°
7、一只因损坏而倾斜的椅子,从背后看到的形状如图,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是( )
A. 75° B. 115° C. 65° D. 105°
8、如图,△ABC是一个什么三角形?( )请说明理由.
A.等腰三角形;
B.等边三角形
C.直角三角形;
D.等腰直角三角形
9、下列四个实数中,是无理数的是( )
A. B.
C.
D.
10、如图所示,要得到DE∥BC,则需要条件( )
A. CD⊥AB,GF⊥AB B. ∠4+∠5=180° C. ∠1=∠3 D. ∠2=∠3
11、计算,正确的是( )
A. B.
C.
D.
12、△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的度数是( )
A. 20° B. 30° C. 45° D. 60°
13、已知4条直线交于一点,那么邻补角的对数是______对.
14、一个两位数的个位数字与十位数字之和为11,若这个两位数加上63,则所得新的两位数恰好成为个位数字与十位数字对调后组成的两位数,那么原来的两位数是_________.
15、点P位于x轴下方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度,那么点P的坐标是_____.
16、已知,则
________.
17、计算(ab)3=_____.
18、已知,
,则
__________.
19、对“神舟十一”的零部件检查,和对重庆市的七年级学生喜欢看CBA的调查分别适合用________调查和________调查.
20、不等式组所有整数解的和是_______.
21、已知:如图,EG∥FH,∠1=∠2.判断直线AB与CD的位置关系,并说明理由.
22、如图,在平面直角坐标系中,A(8,6),C(0,−10),AC=CO,直线AC交x轴于点M,将△AOC沿直线AC翻折,使得点O落在点B处,连接AB交x轴于D,动点P从点O出发,以2个单位长度/秒的速度沿射线OA运动;同时动点Q从A出发以每秒1个单位的速度沿射线AB运动。
(1)求B点的坐标;
(2)连接PB,设点P的运动时间为t秒,△PAB的面积为S,求S与t的关系式,并直接写t的取值范围;
(3)在点P、Q运动过程中,当t为何值时,△APQ是以PQ为底边的等腰三角形?并直接写出Q点坐标。
23、关于的方程组
的解满足
,且关于
的不等式组
有解,则符合条件的整数
的值的和为( )
A. 2 B. 3 C. 4 D. 5
24、已知不等式-1>x与ax-6>5x同解,试求a的值.
25、如图,在中,AB=AC,
是过点A的一直线,且B,C在AE的两侧,
于D,
于E.
(1)求证:
(2)若DE=3,CE=2,求BD.
26、某银行去年新增加居民存款10亿元人民币.
(1)经测量,100张面值为100元的新版人民币大约厚0.9厘米,如果将10亿元面值为100元的新版人民币摞起来,大约有多高?
(2)一台激光点钞机的点钞速度是8×104张/时,按每天点钞5小时计算,如果让点钞机点一遍10亿元面值为100元的新版人民币,点钞机大约要点多少天?