1、下列四个点中在函数y=2x-3的图象上有( )个.
(1,2) , (3,3) , (-1, -1), (1.5,0)
A. 1 B. 2 C. 3 D. 4
2、在平面直角坐标系中,A,B,C三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点
为顶点画平行四边形,则第四个顶点不可能在( ).
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3、如图,已知中,
,
,将
绕点
顺时针方向旋转
到
的位置,连接
,则
的长为( )
A. B.
C.
D.
4、如图是将宽为2 cm的长方形纸条折叠成的形状,那么折痕PQ的长是( )
A. 2 cm
B. cm
C. cm
D. cm
5、如图,点分别是四边形
边
、
、
、
的中点.则下列说法:①若
,则四边形
为矩形;②若
,则四边形
为菱形;③若四边形
是平行四边形,则
与
互相平分;④若四边形
是正方形,则
与
互相垂直且相等.其中正确的个数是( )
A.1 B.2 C.3 D.4
6、富有灿烂文化的永州,现今保留许多具有历史和文化价值的建筑,古朴的建筑物上雕刻的优美图案是我们数学研究的重要内容,图1中的“冰裂纹窗格”图案就是永州古建筑雕刻图案其中的代表,无规则多边形的形状,蕴含了丰富而和谐的数学美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的多边形,根据绘制的图案,则的度数为( )
A.
B.
C.
D.
7、如图所示,正方形ABCD的边长为4,E为BC上一点,BE=1,P为AC上一动点,则当PB+PE取最小值时,求PB+PE=( )
A. 3 B. 4 C. 5 D. 6
8、如图,在平面直角坐标系中,点M是直线y=﹣x上的点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为( )
A.0≤m≤4
B.﹣4≤m≤0
C.m≥﹣4
D.﹣4≤m≤4
9、下列各式中,从左到右的变形是因式分解的是( )
A.
B.
C.
D.
10、已知某一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数为( )
A.y=﹣x﹣2
B.y=﹣x+10
C.y=﹣x﹣6
D.y=﹣x﹣10
11、用“※”表示一种新运算:对于任意正实数a、b,都有a※b=-a,例如2※3=
-2,那么12※196=________.
12、若,化简
__________.
13、等腰三角形腰,底边
,则
的周长为__________.
14、方程的根是______________________;
15、为了表示泊头市“五一”假期这几天的气温变化情况,最合适的统计图是______________.
16、关于的方程(k
1)x2
2(k
2)x+k+1=0有实数根,则实数
的取值范围是__________.
17、运行程序如图所示,从“输入实数x”到“结果是否>18”为一次程序操作,若输入x后程序操作进行了两次停止,则x的取值范围是______.
18、已知关于的不等式组
恰好有三个整数解,则m的取值范围是_________
19、已知矩形ABCD的对角线AC,BD相交于点O,∠AOB=60°,AB=4,则矩形对角线的长是_______.
20、用配方法解一元二次方程x2-mx=1时,可将原方程配方成(x-3)2=n,则m+n的值是 ________ .
21、在平面直角坐标系内,已知.
(1)点A的坐标为(____,______);
(2)将绕点
顺时针旋转
度
.
①当时,点
恰好落在反比例函数
的图象上,求
的值;
②在旋转过程中,点能否同时落在上述反比例函数的图象上,若能,求出
的值;若不能,请说明理由.
22、计算:
(1)
(2)
23、如图,点A、B、C、D在同一直线上,∠E=∠F=90°,AE=BF,AB=CD,求证:∠ACE=∠BDF.
24、如图:正方形网格中每个小方格的边长为1,且点A、B、C均为格点.
(1)求△A的面积.
(2)通过计算判断的形状.
25、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.
(1)求证:△AEF≌△DEC;
(2)当△ABC满足什么条件时,四边形AFBD是矩形?请说明理由.