2025-2026学年(上)哈尔滨八年级质量检测数学

一、选择题(共10题,共 50分)

1、在平面直角坐标中,已知点在第二象限,则点P关于直线直线m上各点的横坐标都是对称的点的坐标是  

A.

B.

C.

D.

2、下列命题正确的是(       

A.三角形的外角等于两个内角的和

B.任何数的0次幂都等于1

C.等腰三角形的腰长一定大于底边长的一半

D.30°的角所对的边等于长边的一半

3、如图,ABC是等边三角形,AD是角平分线,ADE是等边三角形,有下列结论:①ABED,②EF=FD,③BE=DB,其中正确的是(     

A.①②③

B.①②

C.①③

D.②③

4、下列命题的逆命题是真命题的是(   

A.全等三角形周长相等

B.全等三角形面积相等

C.全等三角形对应角都相等

D.全等三角形对应边都相等

5、如图,在中,,点上,点上,将沿折叠,使点的对应点落在的延长线上,设于点,下列结论:①;②;③,其中正确的结论有(       

A.0个

B.1个

C.2个

D.3个

6、用如下算式计算方差:,上述算式中的“”是这组数据的(            

A.最小值

B.平均数

C.中位数

D.众数

7、已知,求代数式的值为(       

A.18

B.28

C.50

D.60

8、一个多边形截去一个角后,形成新多边形的内角和为2 520°,则原多边形的边数为(  )

A.15

B.16

C.13或15

D.15或16或17

9、下列命题正确的是( ).

A. 平行四边形的对角线相等;

B. 一组邻边相等,一组对边平行的四边形是平行四边形;

C. 平行四边形的内角和与外角和相等;

D. 平行四边形相邻的两个内角相等.

10、如果分式有意义,那么x的取值范围是(  )

A.

B.

C.

D.

二、填空题(共10题,共 50分)

11、如图,是边长为的等边的中心,将分别绕点、点、点顺时针旋转),得到,连接

(1)_____

(2)当_____时,的周长最大.

12、已知,则的值是________________________

13、如图,已知点A在数轴上的位置如下,请写出一个表示点A的无理数___________

14、如图,在平面直角坐标系中,点ABC的坐标分别为.点M从坐标原点O出发,第一次跳跃到点,使得点与点O关于点A成中心对称;第二次跳跃到点,使得点与点关于点B成中心对称;第三次跳跃到点,使得点与点关于点C成中心对称;第四次跳跃到点,使得点与点关于点A成中心对称;…,依此方式跳跃,点的坐标是_________

15、若直角三角形的两直角边长分别为,则斜边的长为__________

16、如图,在□ABCD中,AB=5,AD=3,∠A=60°,E是边AD上且AE=2DEF是射线AB上的一个动点,将线段EF绕点E逆时针旋转60°,得到EG,连接BGDG,则BGDG的最大值为________

17、如图四边形ABCD是菱形,点MN分别在ABAD上,且BM=DNMGADNFAB,点FG分别在BCCD上,MGNF相交于点E,若∠A=120°,AB=a),ABMB=3︰1,则四边形CFEG的面积是______________.(用含a的式子表示)

18、如图,已知AF平分BAC,过FFDBC,若BC16°,则F的度数是  

 

 

19、已知等腰中,在线段上,是线段上的动点,的最小值是______.

20、如图,已知△DBC是等腰直角三角形,BECD交于点O,∠BDC=BEC=90°BF=CF,若BC=8OD=,则OF=______.

三、解答题(共5题,共 25分)

21、如图所示,已知P为正方形ABCD外的一点.PA=1,PB=2.将ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,求∠BPC的度数.

22、计算:

(1)

(2)化简:

23、如图,点 E CD 上,BC AE 交于点 F

1)求证:

2 证明:

24、在平面直角坐标系中,已知直线经过两点.

(1)画出该一次函数的图象,求经过两点的直线的解析式;

(2)观察图象直接写出的取值范围;

(3)求这个一次函数的图象与坐标轴所围成的三角形的面积.

25、某知名品牌在甲、乙两地的新店同时开张,乙店经营不久为了差异营销而进行了品牌升级,因此停业了一段时间,随后继续营业,第40天结束时两店销售总收入为2100元.甲、乙两店自开张后各自的销售收入(元)随时间(天)的变化情况如图所示,请根据图象解决下列问题:

(1)乙店停业了______天;

(2)求出图中的值;

(3)求出在第几天结束时两店收入相差150元?

查看答案
下载试卷