1、下列说法:
①在同一平面内,四条边相等的四边形一定是菱形。
②顺次连接矩形各边中点形成的四边形一定是正方形。
③对角线相等的四边形一定是矩形。
④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分。
其中正确的有( )个.
A.4 B.3 C.2 D.1
2、在平面直角坐标系中,点关于
轴的对称点的坐标是( )
A.(-4,-3)
B.(-3,-4)
C.(3,4)
D.(3,-4)
3、下列各式:① ,②
,③
,④
中,最简二次根式有( )
A.1个 B.2个 C.3个 D.4个
4、如图,已知反比例函数和一次函数
的图象相交于点
、
两点,则不等式
的解集为( )
A.或
B.
C. D.
或
5、顺次连结对角线相等的四边形各边中点所得的四边形是( )
A.正方形 B.菱形 C.矩形 D.梯形
6、下列计算正确的是( )
A. B.
C. D.
7、“用长分别为5cm、12cm、13cm的三条线段可以围成直角三角形”这一事件是( )
A. 必然事件 B. 不可能事件 C. 随机事件 D. 以上都不是
8、下列运算正确的是( )
A. ﹣(﹣a+b)=a+b B. 3a3﹣3a2=a C. (x6)2=x8 D. 1÷﹣1=
9、一次函数的图象不经过的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10、如图1,在矩形ABCD中,E是CD上一点,动点P从点A出发沿折线AE→EC→CB运动到点B时停止,动点Q从点A沿AB运动到点B时停止,它们的速度均为每秒1cm.如果点P、Q同时从点A处开始运动,设运动时间为x(s),△APQ的面积为ycm2,已知y与x的函数图象如图2所示,以下结论:①AB=5cm;②cos∠AED= ;③当0≤x≤5时,y=
;④当x=6时,△APQ是等腰三角形;⑤当7≤x≤11时,y=
.其中正确的有( )
A.2个
B.3个
C.4个
D.5个
11、某校规定学生的体育成绩由三部分组成;体育技能测试占50%,体育理论测试占20%,体育课外活动表现30%,甲同学的上述三部分成绩依次为96分,85分,90分,则甲同学的体育成绩为______分.
12、如图,已知一次函数y=kx+3和y=-x+b的图象交于点P(2,4),则关于x的一元一次不等式kx+3>-x+b的解集是_______.
13、已知反比例函数,当
时,其图象的两个分支在第一、三象限内;当
时,其图象在每个象限内
随
的增大而增大;
14、已知函数,当
时,自变量
的取值范围是______.
15、已知:x=(),y=(
),代数式x2﹣xy+y2=_____.
16、在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为
17、△ABC中,AB=7,AC=24,BC=25,则∠A=______.
18、如图,在等腰△ABC 中, AB AC,A 40 ,线段 AC 的垂直平分线交 AC 于 D,交 AB 于 E,连接 CE,则∠BCE 等于___________.
19、如图,在△ABC中,D是AC边上的中点,连结BD,把沿BD翻折,得到
,
与AB交于点E,连结
,若AD=
=2,BD=3,则点D到
的距离为_____________.
20、如图,在中,
,
为
的中点,
,则
__________.
21、已知一次函数y=x﹣2,
(1)画出该函数的图象;
(2)求x=2时的函数值;
(3)求y=3时的x的值;
(4)求这条直线与两坐标轴围成的三角形的面积.
22、已知:在四边形ABCD中,根据下列不同条件求BD长.
(1)如图1,当∠ABC=∠ADC=30°,AD=DC,AB=9,BC=12时,求BD的长.
(2)如图2,当∠ABC=∠ADC=45°,AD⊥AC,AB=6,BC=5时,求BD的长.
(3)如图3,当∠ABC=2∠ADC=120°,AD=DC,四边形ABCD的面积为4时,请直接写出BD的长是 .
23、如图,在中,
,
,
.点O是
的中点,过点O的直线
与从
重合的位置开始,绕点O作逆时针旋转,交
于点D,过点C作
交直线
于点E,设直线
的旋转角为
.
(1)当四边形是等腰梯形时,则
=_______,此时
________;
(2)当四边形是直角梯形时,则
=_________,此时
_________;
(3)当为几度时,判断四边形
是否为菱形,并说明理由.
24、计算:
25、关于x的一元二次方程mx2+nx+1=0.
(1)当n=m+3时,利用根的判别式判断方程根的情况;
(2)若方程有两个相等的实数根,写出一组满足条件的m,n的值,并求此时方程的根.