1、如图,图1、图2、图3分别表示甲、乙、丙三人由A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AH>HB,判断三人行进路线长度的大小关系为( )
A.甲<乙<丙 B.乙<丙<甲
C.丙<乙<甲 D.甲=乙=丙
2、若的值为
,则
的值是( )
A.
B.
C.
D.
3、健走活动中先以均匀的速度走完了规定路程,休息了一段时间后加快速度走完剩余的路程.设“佩奇小组”健走的时间为x,健走的路程为y,如图所示的能反映y与x的函数关系的大致图象是( )
A.
B.
C.
D.
4、如图,△ABC是面积为27cm2的等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积为( )
A.9cm2 B.8cm2 C.6cm2 D.12 cm2
5、关于的一元二次方程
,下列说法错误的是( )
A.方程无实数解
B.方程有一个实数解
C.有两个相等的实数解
D.方程有两个不相等的实数解
6、在平行四边形ABCD中,∠BAD=110°,∠ABD=30°,则∠CBD度数为( )
A.30° B.40° C.70° D.50°
7、二次根式有意义的条件是( )
A.
B.
C.
D.
8、已知关于的一元二次方程
有实数根,则
的取值范围是( )
A.
B.
C.
D.
9、如图,点E在BC的延长线上,下列条件中不能判定AB∥CD的是( )
A.∠1=∠2
B.∠3=∠4
C.∠B=∠DCE
D.∠D+∠DAB=180°
10、如图,网格中每个小正方形的边长均为1,点A,B,C都在格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为( )
A.5 B.0.8 C. D.
11、如图,将Rt△ABC绕点C按顺时针方向旋转90°到△A′B′C的位置, 已知斜边AB=10cm,BC=6cm,设A′B′的中点是M,连结AM,则AM=______cm.
12、当x=____时,分式的值为0.
13、某商店销售一种衬衫,四月份的营业额为5 000元,为扩大销售,五月份将每件衬衫按原价的8折销售,销售量比四月份增加了40件,营业额比四月份增加了600元,求四月份每件衬衫的售价.解决这个问题时,若设四月份的每件衬衫的售价为x元,则由题意可列方程为____________.
14、不等式的正整数解为
______.
15、若x=-
,y=
+
,则xy的值是__________.
16、某天早上,住在同一小区的小雨、小静两人从小区出发,沿相同的路线步行到学校上学.小雨出发5分钟后,小静才出发,同时小雨发现自己没带手表,于是决定按原速回家拿手表小雨拿到手表后,担心会迟到,于是速度提高了20%,结果比小静早2分钟到校.小雨取手表的时间忽略不计,在整个过程中,小静始终保持匀速运动,小雨提速前后也分别保持匀速运动,如图所示是小雨、小静之间的距离(米)与小雨离开小区的时间
(分钟)之间的函数图像,则小区到学校的距离是_______米.
17、一个长方形的长为,宽为
,则它的面积为_________.
18、点A(m,m+5)在函数y=x+2的图象上,则m=_____.
19、点(a,a+2)在第二象限,则a的取值范围是 ________
20、如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为__.
21、解下列一元二次方程:
(1)2x2﹣4x﹣1=0
(2)(3x+1)2=9x+3
22、随着改革开放进程的推进,改变的不仅仅是人们的购物模式,就连支付方式也在时代的浪潮中发生着天翻地覆的改变,除了现金、银行卡支付以外,还有微信、支付宝以及其他支付方式.在一次购物中,小明和小亮都想从微信、支付宝、银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.
23、能够成为直角三角形三边长的三个正整数,我们称之为一组勾股数,观察下列表格所给出的三个数a,b,c,a<b<c.
(1)试找出它们的共同点,并证明你的结论.
(2)写出当a=17时,b,c的值.
3,4,5 | 32+42=52 |
5,12,13 | 52+122=132 |
7,24,25 | 72+242=252 |
9,40,41 | 92+402=412 |
… | … |
17,b,c | 172+b2=c2 |
24、已知a+b=-6,ab=8,试求的值.
25、我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.
【发现与证明】在ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.
(1)填空:B′E DE(填“<,=,>”);
(2)求证:B′D∥AC;
【应用与探究】
(3)在ABCD中,已知:BC=4,∠B=60°,将△ABC沿AC翻折至△AB′C,连结B′D.若以A、C、D、B′为顶点的四边形是矩形,求AC的长.