1、如图,点A(a,2)、B(−2,b)都在双曲线(x<0)上,点P、Q分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是
,则k的值为( )
A.-7 B.-4 C.3 D.7
2、为了调查某一路口某时段的汽车流量,记录了10天这一时段通过该路口的汽车辆数,其中有2天是142辆,2天是145辆,3天是150辆,1天是154辆,2天是156辆.那么这10天在该时段通过该路口汽车平均辆数为( )
A. 148 B. 149 C. 150 D. 151
3、下列各式成立的是( )
A. B.
C.
D.
4、与是同类二次根式的是( )
A. B.
C.
D.
5、下列各组数中不是勾股数的是( )
A.3,4.5
B.6.8.10
C.5,12.13
D.4,5,6
6、下列各式:①3+3=6
;②
=1;③
+
=
=2
;④
=2
,其中错误的有( ).
A. 3个 B. 2个 C. 1个 D. 0个
7、下列图形中是中心对称图形的是( )
A.等边三角形
B.等腰三角形
C.平行四边形
D.正五边形
8、按照我国《生活垃圾管理条例》要求,到2025年底,我国地级及以上城市要基本建设垃圾类处理系统,下列垃圾分类指引标志图形中,是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.
9、下列各式中,与是同类二次根式的是
A. B.
C.
D.
10、如图,已知直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(-2,0),则k的取值范围是( )
A. -2<k<2 B. 0<k<2 C. 0<k<4 D. -2<k<0
11、在▱ABCD中,∠A+∠C=270°,则∠A=_____.
12、在□ABCD中,若∠A+∠C=120°,则∠A=________,∠B=__________.
13、小明和小华先后从甲地出发到乙地,小明先乘坐客车出发1小时,小华才开车前住乙地,小华到达乙地后立即按原速从乙地返回甲地。已知小明、小华离甲地距离y(千米)与小明出发时间x(小时)之间的函数关系如图所示,请根据图象解答下列问题:小华从乙地返回后再经过___小时与小明相遇.
14、化简的结果为________.
15、关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0 的解是__________.
16、如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB=_____.
17、如图,菱形ABCD的周长为40,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,若,则菱形ABCD的面积为________.
18、在Rt△ABC中,∠C= 900,AC=5,BC=12,则AB边的长是____________.
19、已知关于的一元二次方程
有两个不相等的实数根,则满足条件的
的最大整数值是_______.
20、在矩形ABCD中,点A关于∠B的平分线的对称点为E,点E关于∠C的平分线的对称点为F.若AD=AB=2
,则AF2=_____.
21、若,且有种运算
,根据上述运算解方程
.
22、已知直线L经过点(-1,5),(1,3)两点,
(1) 求直线L的解析式;
(2)若直线 L分别交 x 轴、y 轴于 A、B 两点,求A、B 两点的坐标.
(3)求△AOB 的面积.
23、已知一次函数y=kx+b的图象经过点A(0,2)和点B(1,3).
(1)求此一次函数的解析式;
(2)若一次函数y=kx+b的图象与x轴相交于点C,求△OBC的面积.
24、先化简,再求值:,其中x²-x-2=0
25、已知一次函数y=(2m-3)x+m+2.
(1)若函数图像过原点,求m的值;
(2)若函数图像过点(-1,0),求m的值;
(3)若函数图像平行于直线y=-x+2求m的值;
(4)若函数图像经过第一、二、四象限,求m的取值范围.