1、下列运算正确的是( )
A. B.
C. D.
2、如图,矩形ABCD的边长AB=6,BC=8,将矩形沿EF折叠,使点C与点A重合,则折痕EF的长是( )
A. 7.5 B. 6 C. 10 D. 5
3、若在反比例函数
的图像上,则下列结论正确的是( )
A. B.
C. D.
4、如图,某个函数的图象由线段AB和BC组成,其中点 A(0,),B(1,
),C(2,
),则此函数的最小值是( )
A.0 B. C.1 D.
5、已知四边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:
①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;
②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;
③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;
④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.
其中正确的说法是( )
A.①②
B.①③④
C.②③
D.②③④
6、下列由左到右变形,属于因式分解的是( )
A.
B.
C.
D.
7、化简的结果是( )
A.
B.
C.
D.
8、下图图象反映的过程是:小明从家跑步到体育馆,在那里锻炼了一阵后又走到新华书店去买书,然后散步走回家其中t表示时间,s表示小明离家的距离,那么小明在体育馆锻炼和在新华书店买书共用去的时间是
A. 35分钟 B. 45分钟 C. 50分钟 D. 60分钟
9、如果下列各式中不正确的是( )
A.
B.
C.
D.
10、不等式的解集在数轴上表示正确的是( )
A. B.
C. D.
11、在分式中,最简公分母________
12、如图所示,在四边形中,
是对角线
的中点,
、
分别是
、
的中点,
,
,则
的周长是__________.
13、已知四边形是周长为32的平行四边形,若
,则
__________.
14、若,则不等式
的解集为______________;
15、已知是正整数,
是整数,则
的最小值为________.
16、的相反数是____.
17、重庆育才成功学校食堂有10个供应饭菜的窗口,第1到5号窗口的每一位工作人员的打饭速度是相同的,第6到10号窗口是炒菜炒饭特色窗口,它的每一位工作人员的打饭速度是第1到5号窗口的每一位工作人员速度的.小主人委员会同学在执勤时发现:第1到5号窗口分别都有相同数量的同学在排队,第6、7、8号窗口分别都有1号窗口数量的
的同学在排队,第9、10号窗口分别都有1号窗口数量的
同学在排队,从此时开始计时,第1到5号窗口在10分钟后结束排队,第6、7、8号窗口在18分钟以后结束排队,第9、10号窗口在15分钟以后结束排队.后来小主人委员会的同学从伙食团团长处了解到:第1到5号窗囗全部安排给了甲组工作人员负责打饭,第6到10号窗口全部安排给了乙组工作人员负责打饭,其中乙组工作人员的
在6、7、8三个窗口打饭,另外的
在9、10号两个窗口打完饭后,再到6、7、8号窗口帮忙直到排队结束,如果在排队期间,每个窗口单位时间里来排队吃饭的同学数量相同,则甲、乙两组工作人员的人数之比是_____.
18、我校要对如图所示的一块地进行绿化,已知AD=4米,CD=3米,∠ADC=90°,AD⊥DC,AB=13米,BC=12米,求这块地的面积.
19、在平面直角坐标系中,将直线y=-2x+1的图象向左平移2个单位,再向上平移1个单位,所得到直线的解析式是__________。
20、已知,如图△ABC中, G是重心, S△ABC=12,则阴影部分的面积是___.
21、如图1,以直线MN上的线段BC为边作正方形ABCD,CH平分∠DCN,点E为射线BN上一点,连接AE,过点E作AE的垂线交射线CH于点F,探索AE与EF的数量关系。
(1)阅读下面的解答过程。并按此思路完成余下的证明过程
当点E在线段BC上,且点E为BC中点时,AB=EF
理由如下:
取AB中点P,達接PE
在正方形ABCD中,∠B=∠BCD=90°,AB=BC
∴△BPE等腰三角形,AP=BC
∴∠BPB=45°
∴∠APBE=135°
又因为CH平分∠DCN
∴∠DCF=45°
∴∠ECF=135°
∴∠APE=∠ECF
余下正明过程是:
(2)当点E为线段AB上任意一点时,如图2,结论“AE=EF”是否成立,如果成立,请给出证明过程;
(3)当点E在BC的延长线时,如图3,结论“AE=EF”是否仍然成立,如果成立,请在图3中画出必要的辅助线(不必说明理由)。
22、画出函数y= -x-3的图象.
23、某校九年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序如下:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试.两个程序的结果统计如下:
测试项目 | 测试成绩/分 | ||
甲 | 乙 | 丙 | |
笔试 | 92 | 90 | 95 |
面试 | 85 | 95 | 80 |
请你根据以上信息解答下列问题:
(1)请分别计算甲、乙、丙的得票数;
(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2:5:3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.
24、如图,AB⊥EF于点B,CD⊥EF于点D,∠1=∠2.
(1)请说明AB∥CD;
(2)试判断BM与DN是否平行,为什么?
25、解方程:(1) (2)