1、如图,在菱形中,
于点
,
点恰好为
的中点,则菱形
的较大内角度数为( )
A.100°
B.120°
C.135°
D.150°
2、下列计算正确的是( )
A. B.
C.
D.
3、下列方程有实数根的是( )
A. B.
C.
D.
4、如图,在四边形ABCD中,∠A=90°,AB=3,,点M、N分别为线段BC、AB上的动点,点E、F分别为DM、MN的中点,则EF长度的最大值为( )
A.2
B.3
C.4
D.
5、要使分式有意义,则
的取值应满足( )
A.
B.
C.
D.
6、如图,直线.则直线
,
之间的距离是( )
A.线段的长度
B.线段的长度
C.线段
D.线段
7、、
两地相距20千米,甲、乙两人都从
地去
地,图中
和
分别表示甲、乙两人所走路程
(千米)与时间
(小时)之间的关系,对于下列说法错误的是( )
A.乙晚出发1小时
B.乙出发3小时后追上甲
C.甲的速度是6千米/小时
D.乙先到达地
8、在函数y=中,自变量x的取值范围是( )
A.x≥-3且x≠0
B.x<3
C.x≥3
D.x≤3
9、已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,则△ABC是( )
A.直角三角形
B.等腰三角形
C.等腰三角形或直角三角形
D.等腰直角三角形
10、如图,在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°,则四边形ABCD的面积是( )
A. 36 B. 40 C. D. 38
11、在4个不透明的袋子中分别装有10个球,其中,1号袋中有10个红球,2号袋中有8个红球.2个白球,3号袋中有5个红球.5个白球,4号袋中有2个红球,8个白球.从各个袋子中任意摸出1个球,摸到白球的可能性最大的是_____(填袋子号).
12、今年全国高考报考人数是10310000,将10310000科学记数法表示为_____.
13、计算__________.
14、如图所示,△ABC绕点A顺时针旋转45°得到△AB'C',若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于____.
15、已知,
,
.则
__________.
16、如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(-1,1),紧接着第二次向右跳动3个单位至点A2(2,1),第三次跳动至点A3(-2,2),第四次向右跳动5个单位至点A4(3,2),依此规律跳动下去,点A第100次跳动至点A100的坐标是________________.
17、计算:_________.
18、已知双曲线经过点(1,-2),则k=_____.
19、(2015·泰安)如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.若AB=8,AD=12,则四边形ENFM的周长为_____.
20、若式子在实数范围内有意义,则x的取值范围是___.
21、现有一张长和宽之比为2:1的长方形纸片.将它折两次(第一次折后也可以打开铺平再折第二次).使得折痕将纸片分为面积相等且不重叠的四个部分(称为一个操作),如图甲(虚线表示折痕).
除图甲外,请你再给出三个不同的操作,分别将折痕画在图①至图③中(规定:一个操作得到的四个图形,和另一个操作得到的四个图形,如果能够“配对”得到四组全等的图形,那么就认为是相同的操作.如图乙和图甲是相同的操作).
图① 图② 图③
22、已知一次函数,
.
(1)若关于的方程
的解是负数,求
的取值范围;
(2)若以、
为坐标的点
是已知两个一次函数图象的交点,求
的值;
(3)若,求
、
的值.
23、如图,直线与
轴交于点
,与
轴交于点
.
(1)请直接写出点的坐标为________,点
的坐标为________;
(2)若直线上的点
在第二象限,且
,求
的度数.
24、如图,一次函数y=x+6的图象与反比例函数y(x<0)的图象交于A(﹣1,a)、B(b,1)两点.
(1)求a、b、k的值;
(2)当一次函数的值大于反比例函数的值时,根据图象写出自变量x的取值范围;
(3)求△ABO的面积.
25、如图,三个顶点的坐标分别为
,
,
.
()请画出将
向左平移
个单位长度后得到的图形
.
()请画出
关于原点
成中心对称的图形
()在
轴上找一点
,使
的值最小,请直接写出点
的坐标.