2025-2026学年(下)阜阳八年级质量检测数学

一、选择题(共10题,共 50分)

1、-a52+-a25的结果是(  )

A.0

B.

C.

D.

2、根号外的因式移到根号内的结果为(   .

A.  B.  C.  D.

3、是直线上的两点,当时,有,则的取值范围是  

A.  B.  C.  D.

4、下列各组长度的线段能组成直角三角形的是(  

A. B. C. D.

5、已知关于x的一元二次方程(a+c)x2+2bx+a﹣c=0,其中a、b、c分别为△ABC三边的长.下列关于这个方程的解和△ABC形状判断的结论错误的是(  )

A. 如果x=﹣1是方程的根,则△ABC是等腰三角形

B. 如果方程有两个相等的实数根,则△ABC是直角三角形

C. 如果△ABC是等边三角形,方程的解是x=0x=﹣1

D. 如果方程无实数解,则△ABC是锐角三角形

6、菲尔兹奖(Fields Medal)是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家,下面是对截至201556名获奖者的年龄进行统计得到的统计图.则下列说法中正确的是( )

A. 平均年龄是37.5   B. 中位数年龄位于33.536.5

C. 众数年龄位于36.539.5   D. 以上选项都不正确

7、如图,在四边形ABCD中,AD//BCAD=6 cm,BC=12 cm,点PA出发以1 cm/s的速度向D运动,点QC出发以2 cm/s的速度向B运动.两点同时出发,当点P运动到点D时,点Q也随之停止运动.若设运动的时间为t秒,以点ABCDPQ任意四个点为顶点的四边形中同时存在两个平行四边形,则t的值是( )

A.1

B.2

C.3

D.4

8、若函数是正比例函数,则的值是(       

A.

B.

C.

D.任意实数

9、如图,直线y1=kx+2与直线y2=mx相交于点P(1,m),则不等式mx<kx+2的解集是(  )

A.x<0

B.x<1

C.0<x<1

D.x>1

10、如图,是一张平行四边形纸片ABCD,要求利用所学知识作出一个菱形,甲、乙两位同学的作法分别如下:

甲:连接AC,作AC的中垂线交AD、BC于E、F,则四边形AFCE是菱形.

 

乙:分别作的平分线AE、BF,分别交BC于点E,交AD于点F,则四边形ABEF是菱形.

对于甲、乙两人的作法,可判断(        )

A.甲正确,乙错误

B.甲错误,乙正确

C.甲、乙均正确

D.甲、乙均错误

二、填空题(共10题,共 50分)

11、不等式2x-1>x解集是_________.

12、已知菱形的两条对角线分别是,则该菱形的周长为_____,面积是_____

13、延长正方形ABCDBC边至点E,使CE=AC,连结AE,交CDF,那么∠AFC的度数为______,若BC=4cm,则ACE的面积等于______

14、抛物线两点,与y轴的交点为,则抛物线的解析式__________

15、如图所示,为等边三角形,内任一点,,若的周长为,则____

16、在四边形ABCD中,∠ADA∶∠B∶∠C3∶2∶1,则∠A_______

17、某校艺术节演出中,5位评委给某个节目打分如下:9分,9.3分,8.9分,8.7分,9.1分,则该节目的平均得分是__分.

18、平行四边形ABCD中,,则∠C=______°

19、把直线沿y轴向上平移3个单位,所得直线的函数解析式为____

20、如图,DEF分别是△ABCABACBC上的中点,若AB=7BC=6AC=5,则△DEF的周长是  

三、解答题(共5题,共 25分)

21、如图,方格纸中的每个小方格都是边长为1个单位的正方形.RtABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(41),点B的坐标为(11)

1)先将RtABC向右平移5个单位,再向下平移1个单位后得到RtA1B1C1.试在图中画出图形RtA1B1C1

2)将RtA1B1C1绕点A1顺时针旋转90°后得到RtA2B2C2,试在图中画出图形RtA2B2C2.并计算C1C2的长.

22、已知成正比例,且时,

(1)求的函数关系式;

(2)当时,求的值;

23、为了解高中学生每月用掉中性笔笔芯的情况,随机抽查了30名高中学生进行调查,并将调查的数据制成如下的表格:

月平均用中性笔笔芯()

4

5

6

7

8

9

被调查的学生数

7

4

9

5

2

3

 

 

请根据以上信息,解答下列问题:

(1)被调查的学生月平均用中性笔笔芯数大约________根;

(2)被调查的学生月用中性笔笔芯数的中位数为________根,众数为________根;

(3)根据样本数据,若被调查的高中共有1000名学生,试估计该校月平均用中性笔笔芯数9根的约多少人?

24、如图①,四边形ABCD为正方形,点EF分别在ABBC上,且∠EDF=45°,易证:AE+CF=EF(不用证明).

1)如图②,在四边形ABCD中,∠ADC=120°DA=DC,∠DAB=BCD=90°,点EF分别在ABBC上,且∠EDF=60°.猜想AECFEF之间的数量关系,并证明你的猜想;

2)如图③,在四边形ABCD中,∠ADC=2αDA=DC,∠DAB与∠BCD互补,点EF分别在ABBC上,且∠EDF=α,请直接写出AECFEF之间的数量关系,不用证明.

25、如图,已知ABC的三个顶点坐标A(10)B(2,-2)C(4,-1)

1)请画出ABC关于坐标原点O的中心对称图形A1B1C1,并写出A1B1C1的面积    

2)请直接写出:所有满足以ABC为顶点的平行四边形的第四个顶点D的坐标    

查看答案
下载试卷