1、若把一次函数y=2x﹣3的图象向上平移3个单位长度,得到图象解析式是( ).
A.y=2x B.y=2x﹣6 C.y=5x﹣3 D.y=﹣x﹣3
2、若命题“”不成立,那么a与0的大小关系是( )
A.
B.
C.
D.
3、成都是一个历史悠久的文化名城,以下这些图形都是成都市民熟悉的,其中是中心对称图形的是( )
A. B.
C.
D.
4、某中学对学生进行各学科期末综合评价,评价分平时成绩和期末实考成绩两部分,平时成绩与期末实考成绩按 4∶6计算作为期末评价结果,若小明数学的平时成绩为 85分,期末实考成绩为 90分,则他的数学期末评价结果为( )
A.89 分 B.88 分 C.87 分 D.86 分
5、如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形.点C也在格点上,且△ABC为等腰三角形,则符合条件的点C有( )个.
A.3 B.5 C.8 D.10
6、已知关于的不等式
的正整数解恰好为1,2,3,则
的取值范围是
A. B.
C.
D.
7、若把分式中
都扩大3倍,那么分式的值()
A.扩大3倍
B.缩小3倍
C.不变
D.缩小6倍
8、如图,沿
所在直线向左平移
得到
,若
的周长为
则四边形
的周长为( )
A.
B.
C.
D.
9、如图,AB⊥BC,DC⊥BC,E是BC上一点,∠BAE=∠DEC=60°,AB=3,CE=4,则AD等于( )
A.10 B.12 C.24 D.48
10、如图①、图②,在给定的一张矩形纸片上作一个正方形,甲、乙两人的作法如下:
甲:以点A为圆心,AD长为半径画弧,交AB于点E,以点D为圆心,AD长为半径画弧,交CD于点F,连接EF,则四边形AEFD即为所求;
乙:作∠DAB的平分线,交CD于点M,同理作∠ADC的平分线,交AB于点N,连接MN,则四边形ADMN即为所求.
对于以上两种作法,可以做出的判定是( )
A.甲正确,乙错误 B.甲、乙均正确
C.乙正确,甲错误 D.甲、乙均错误
11、若直角三角形斜边上的中线是6cm,则它的斜边是 ___ cm.
12、不等式5(x﹣2)≤6+2x的正整数解共有_____个.
13、如图,螺旋形是由一-系列等腰直角三角形组成的,其序号依次为①②③④⑤.,若第个等腰直角三角形的直角边长为
,则第
个等腰直角三角形的面积为__________.
14、若关于x的方程+1=
无解,则m=_________.
15、已知正比例函数y= (2-3k)x图像上有两点A(x1,y1),B(x2,y2),当x1>x2时,y1<y2,则k的取值范围是____________
16、如图,在△ABC中,∠ACB=90°,AB=13 cm,BC=12 cm,点D在边AB上,AD=AC,AE⊥CD,垂足为E,点F是BC的中点,则EF=______cm.
17、如图所示为杨辉三角函数表的一部分,它的作用是指导读者按规律写出形如 为正整数)展开式的众数,请你仔细观察表中的规律,填出
展开式中所缺的系数.
____
_____
_____
+
18、用四舍五入法将圆周率精确到十分位,即
__.
19、已知正方形ABCD的边长为4,点E,F分别在AD,DC上,AE=DF=1,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为_____.
20、在篮球比赛中,某队员连续10场比赛中每场的得分情况如下表所示:
场次(场) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
得分(分) | 13 | 4 | 13 | 16 | 6 | 19 | 4 | 4 | 7 | 38 |
则这10场比赛中他得分的中位数和众数分别是_________.
21、如图,已知矩形ABOC,顶点B、C分别在x轴的负半轴和y轴的正半轴上,A(-4,8),一次函数的图象分别交边AB、OC于D、E,交x轴于F,且AD=OE
(1) 求b值
(2) 若点P(x,y)是线段EF上一点,若△PEO与△PBO的面积的比为1∶4,求P点坐标
22、计算:(1)
(2)
23、如图,△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F,BG⊥AD,垂足为G.
(1)求证:AD=BE;
(2)求∠AFB的度数;
(3)线段FG与BF有什么数量关系?请说明理由.
24、(2016四川省攀枝花市)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.
(1)求每吨水的政府补贴优惠价和市场价分别是多少?
(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;
(3)小明家5月份用水26吨,则他家应交水费多少元?
25、已知关于x的一元二次方程x2+mx+2n=0,其中m、n是常数.
(1)若m=4,n=2,请求出方程的根;
(2)若m=n+3,试判断该一元二次方程根的情况.