1、如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
2、下列计算正确的是( )
A.(﹣2a)2=2a2
B.a6÷a3=a2
C.﹣2(a﹣1)=2﹣2a
D.a•a2=a2
3、以下四种沿折叠的方法中,不一定能判定纸带两条边线
,
互相平行的是( ).
A. 如图,展开后测得
B. 如图,展开后测得
C. 如图,测得
D. 如图,展开后再沿
折叠,两条折痕的交点为
,测得
,
4、关于的方程
的解为正数,且关于y的不等式组
有解,则符合题意的整数
有( )个
A. 4 B. 5 C. 6 D. 7
5、如图,PA、PB、CD是⊙O的切线,切点分别是A、B、E,CD分别交PA、PB于C、D两点,若∠APB=60°,则∠COD的度数( )
A.50°
B.60°
C.70°
D.75°
6、已知关于x的二次函数y=x2+(2-a)x+5,当1≤x≤3时,y在x=1时取得最大值,则实数a的取值范围是( )
A.a≥2
B.a≤-2
C.a≥6
D.a<0
7、下列命题中真命题的个数是( )
①在函数(m为常数)中,当
时,
②相等的圆心角所对的弧相等;
③三角形的内心到三边的距离相等;
④顺次连接矩形各边中点得到的四边形是菱形;
⑤对于任意实数m,关于x的方程有两个不相等的实数根.
A.2
B.3
C.4
D.5
8、下列运算正确的是( )
A.
B.
C.
D.
9、下表是某位男子马拉松长跑运动员近6次的比赛成绩(单位:分钟)
第几次 | 1 | 2 | 3 | 4 | 5 | 6 |
比赛成绩 | 145 | 147 | 140 | 129 | 136 | 125 |
则这组成绩的中位数和平均数分别为( )
A. 137、138 B. 138、137 C. 138、138 D. 137、139
10、如图,直线与x轴、y轴分别交于点A、B两点,下列各点向左平移2个单位后能落在
内部的是( )
A. (3, ) B. (2,2) C. (4,1) D. (3,1)
11、因式分解:__________.
12、计算:__________.
13、若式子在实数范围内有意义,则
的取值范围是______.
14、在平面直角坐标系中,直线
与双曲线
交于点
和点B,则点B的坐标为______.
15、如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10 m,∠B=36°,则中柱AD(D为底边中点)的长是______.
16、图,在▱ABCD中,以AB的中点为圆心,AE长为半径画弧,交CD于点F,点F恰好为CD的中点,若∠B=60°,BC=6,则图中阴影部分的面积为_____.
17、如图,已知在平面直角坐标系xOy中,抛物线经过原点,且与
轴相交于点
,点
的横坐标为6,抛物线顶点为点
.
(1)求这条抛物线的表达式和顶点的坐标;
(2)过点作
,在直线
上点取一点
,使得
,求点
的坐标;
(3)将该抛物线向左平移个单位,所得新抛物线与
轴负半轴相交于点
且顶点仍然在第四象限,此时点
移动到点
的位置,
,求
的值.
18、(1)计算:(x﹣y)(x+3y)﹣x(x+2y).
(2)先化简:,然后从0,2,3中选择一个合适的数代入求值.
19、某特色农产品在市场上颇具竞争力,上市时,赵经理按市场价格10元/千克在某地收购了2000千克农产品存放入冷库中,据预测,农产品的市场价格每天每千克将上涨0.5元,但冷库存放这种农产品时每天需要支出各种费用合计340元,而且该产品在冷库中最多保存110天,同时,平均每天有6千克的产品损坏不能出售.
(1)若存放x天后,将这批农产品一次性出售,销售总金额为y元,直接写出y与x之间的函数关系式为 (1≤x≤110,x为整数).
(2)赵经理想获得利润22500元,需将这批农产品存放多少天后出售?(利润=销售总额﹣收购成本﹣各种费用)
(3)赵经理将这批农产品存放多少天后出售可获得最大利润?最大利润是多少?
20、数学课上,李老师准备了四张背面都一样的卡片A、B、C、D,每张卡片的正面标有字母a、b、c表示三条线段(如下图).把四张卡片背面朝上放在桌面上,李老师从这四张卡片中随机抽取一张卡片后不放回,再随机抽取一张.
⑴ 李老师随机抽取一张卡片,抽到卡片B的概率等于 ;
⑵ 求李老师抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率.
21、为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种,结果提前4天完成任务,原计划每天种多少棵树?
22、如图,AD∥BC,∠AEF=∠F,直线EF与AB,CD的延长线分别交于点E,F.求证:∠A=∠C.
23、如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).
第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;
第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依次操作下去…
(1)图2中的△EFD是经过两次操作后得到的,其形状为 ,
(2)若经过三次操作可得到四边形EFGH.
①请判断四边形EFGH的形状为 ,此时AE与BF的数量关系是 ;
②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围。
24、解方程