1、如图,在边长为1的正六边形中,
是边
上一点,则线段
的长可以是( )
A.1.4
B.1.6
C.1.8
D.2.2
2、八年级班部分学生去春游时,每人都和同行的其他每一人合照一张双人照,共照了双人照片
张,则同去春游的人数是( )
A.
B.
C.
D.6
3、已知点A(﹣1,y1),点B(2,y2)在函数y=﹣3x+2的图象上,那么y1与y2的大小关系是( )
A.y1>y2
B.y1<y2
C.y1=y2
D.不能确定
4、方程组的解是( )
A.
B.
C.
D.
5、宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是( )
A.矩形ABFE
B.矩形EFCD
C.矩形EFGH
D.矩形DCGH
6、自新型冠状病毒肺炎肆虑全球以来,万众一心战疫情已成为世界各国的共同语言,截止到2020年4月26日,全球感染新型冠状病毒肺炎的治愈人数已经突破858000人,将858000用科学记数法表示为()
A. B.
C.
D.
7、如图,中,
,
,
,
是线段
上一个动点,以
为边在
外作等边
.若
是
的中点,则
的最小值为( )
A.6 B.8 C.9 D.10
8、下列事件中,属于不可能事件的是( )
A.经过红绿灯路口,遇到绿灯
B.班里的两名同学,他们的生日是同一天
C.射击运动员射击一次,命中靶心
D.一个只装有白球和红球的袋中摸球,摸出黄球
9、如图,四边形ABCD是菱形,,
,
于H,则DH等于( )
A. B.
C. 5 D. 4
10、在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )
A.220
B.218
C.216
D.209
11、如图,四边形ABCD是菱形,对角线,
,
于点
,则
的长为_________.
12、如图,在△ABC中,cosB=,sinC=
,AC=5,则△ABC的面积是_____.
13、若扇形的圆心角为120°的弧长是12πcm,则这个扇形的面积是______________
14、在一张复印出来的纸上,一个多边形的一条边由原图中的2 cm变成了6 cm,这次复印的放缩比例是________.
15、刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,如图,若用圆的内接正十二边形的面积来近似估计
的面积
,设
的半径为1,则
__________.
16、如图,由一个正六边形和一个正五边形组成的图形中∠α的度数是_____.
17、为推动阳光体育运动的广泛开展,引导学生走向大自然,走到阳光下积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如图所示两个统计图,请根据相关信息,解答下列问题:
(1)求本次抽样调查的学生人数
(2)通过计算补全条形统计图和扇形统计图;
(3)若学生计划购买200双运动鞋,建议购买35号运动鞋约多少双?
18、已知抛物线经过A(﹣2,0),B(0,2),C(,0)三点,一动点P从原点出发以1个单位/秒的速度沿x轴正方向运动,连接BP,过点A作直线BP的垂线交y轴于点Q.设点P的运动时间为t秒.
(1)求抛物线的解析式;
(2)当BQ=AP时,求t的值;
(3)随着点P的运动,抛物线上是否存在一点M,使△MPQ为等边三角形?若存在,请直接写t的值及相应点M的坐标;若不存在,请说明理由.
19、某网店以每件40元的价格购进一款童装. 由试销知,每星期的销售量t(件)与每件的销售价x(元)之间的函数关系式为t=-30x+2100.
(1)求每星期销售这款童装的毛利润y(元)与每件销售价x(元)之间的函数表达式;
(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?
(3)为了使每星期利润不少于6000元,求每件销售价x的取值范围.
20、(1)如图1,已知△ABC中AB=AC,∠BAC=36°,BD是角平分线,求证:点D是线段AC的黄金分割点;
(2)如图2,正五边形的边长为2,连结对角线AD、BE、CE,线段AD分别与BE和CE相交于点M、N,求MN的长;
(3)设⊙O的半径为r,直接写出它的内接正十边形的长=_________________(用r的代数式表示).
21、数学学习小组的同学共同探究体积为330mL圆柱形有盖容器(如图所示)的设计方案.,他们想探究容器表面积与底面半径的关系.
具体研究过程如下,请补充完整:
(1)建立模型:设该容器的表面积为S,底面半径为
cm,高为
cm,则
, ①
, ②
由①式得,代入②式得
. ③
可知,S是x的函数,自变量x的取值范围是.
(2)探究函数:
根据函数解析式③,按照下表中自变量x的值计算(精确到个位),得到了S与x的几组对应值:
… | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 | … | |
… | 666 | 454 | 355 | 303 | 277 | 266 | 266 | 274 | 289 | 310 | 336 | … |
在下面平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(3)解决问题:根据图表回答,
①半径为2.4cm的圆柱形容器比半径为4.4cm的圆柱形容器表面积______.(填“大”或“小”);
②若容器的表面积为300,容器底面半径约为______cm(精确到0.1).
22、已知∠MCN=45°,点B在射线CM上,点A是射线CN上的一个动点(不与点C重合).点B关于CN的对称点为点D,连接AB、AD和CD,点F在直线BC上,且满足AF⊥AD.小明在探究图形运动的过程中发现AF=AB:始终成立.
如图,当0°<∠BAC<90°时.
① 求证:AF=AB;
② 用等式表示线段与
之间的数量关系,并证明;
当90°<∠BAC<135°时,直接用等式表示线段CF、CD与CA之间的数量关系是 .
23、如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.
(1)当BC=1时,求线段OD的长;
(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;
(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.
24、解分式方程: .