1、高斯是德国著名数学家,近代数学莫基者之一,享有“数学王子”称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设,用
表示不超过
的最大整数,则
称为高斯函数,例如
,
.已知函数
,函数
,则下列4个命题中,真命题的个数为( ).
①函数是周期函数 ②函数
的值域是
③函数的图象关于
对称 ④方程
只有一个实数根
A.1
B.2
C.3
D.4
2、如图,已知、
,从点
射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,光线所经过的路程是( )
A. B.6 C.
D.
3、已知,
,则
( )
A.
B.
C.
D.
4、若等差数列满足
,则
( )
A.
B.
C.
D.
5、已知扇形的弧长是2,面积是4,则扇形的圆心角的弧度数是( )
A. B.
C.
D.4
6、设全集,
,则集合
的子集个数为( )
A.2
B.4
C.8
D.16
7、点到直线
的距离的最小值为( )
A.4 B. C.
D.
8、一条弧所对的圆心角是2rad,它所对的弦长为2,则这条弧的长是( )
A.
B.
C.
D.
9、设是定义在R上的奇函数,当
时,
,则
( )
A. 1 B. 3 C. -3 D. 0
10、函数(其中A>0,
)的图像如图所示,为了得到
的图像,则只要将
的图像( )
A.向右平移个单位长度
B.向右平移个单位长度
C.向左平移个单位长度
D.向左平移个单位长度
11、不等式组的解集是
,则m的取值范围是( )
A. B.
C.
D.
12、设(
是虚数单位),则
在复平面内对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
13、经过作直线
,若直线
与连接
的线段总有公共点,则直线
的斜率的取值范围为 .
14、已知函数,
的最大值为
,则
的解析式为
______.
15、设向量,若
,则实数
的值是___________.
16、不等式的解为______.
17、在梯形中,
,
,
.将梯形
绕
所在的直线旋转一周形成的曲面所围成的几何体的体积为________.
18、已知,
,
,则
__________
19、盒子里放有外形相同且编号为,
,
,
,
的五个小球,其中
号与
号是黑球,
号、
号与
号是红球,从中有放回地每次取出
个球,共取两次,则取到的
个球中至少有
个是红球的概率为___________.
20、函数的定义域为 ________.
21、若三条直线ax+2y+8=0,4x+3y-10=0和2x-y=0相交于一点,则实数a的值为______.
22、有下列命题:
①已知是平面内两个非零向量,则平面内任一向量
都可表示为
,其中
;
②对平面内任意四边形,点
分别为
的中点,则
;
③已知与
夹角为
,且
,则
的最小值为
;
④是
的充分条件.
其中正确的是_______(写出所有正确命题的编号).
23、已知复数(
是虚数单位).
(1)若对应复平面上的点在第四象限,求实数
的取值范围;
(2)若是纯虚数,求实数
的值.
24、如图,要把半径为R的半圆形木料截成长方形,应怎样截取才能使△OAB的周长最大?最大周长是多少?
25、已知函数的图象在
内是连续不断的,对应值表如下:
0 | 1 | 2 | 3 | 4 | 5 | |||
(1)计算上述表格中的对应值和
;
(2)从上述对应填表中,可以发现函数在哪几个区间内有零点?说明理由.