1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、下表是元素周期表前三周期,针对表中的①~⑧元素,回答下列问题:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||
|
|
|
|
|
|
|
|
|
|
|
| ⑤ | ⑥ |
|
| ||
① | ② |
|
|
|
|
|
|
|
| ③ | ④ |
| ⑦ |
| ⑧ | ||
(1)元素④在周期表中的位置是________。
(2)在这些元素原子中,得电子能力最强的是______(填元素符号)。
(3)单质化学性质最不活泼的元素是______(填元素符号),元素②原子结构示意图为______。
(4)元素⑥、⑦形成的氢化物中,沸点高的是______(填化学式)。
(5)元素①的最高价氧化物对应的水化物所含化学键的类型是_______。
(6)元素⑤最简单的氢化物和最高价氧化物对应的水化物相互反应的产物是_______。
(7)写出元素③的单质与稀盐酸反应的离子方程式_______。
3、工业上用化学气相沉积法制备氮化硅,其反应如下:
3SiCl4(g)+2N2(g)+6H2(g) Si3N4(s)+12HCl(g) ΔH<0
某温度和压强条件下,分别将1.25mol SiCl4(g)、1.0mol N2(g)、10.5mol H2(g)充入20L密闭容器内,进行上述反应,5min达到平衡状态,所得Si3N4(s)的质量是35.0g.已知:
化学键 | Si-Cl | N≡N | H-H | Si-N | H-Cl |
键能(KJ/mol) | a | b | c | d | e |
(1)计算该反应的ΔH=_______________
(2)H2的平均反应速率是
(3)平衡时容器内N2的浓度是
(4)SiCl4(g)的转化率是 %
(5)下图为合成Si3N4反应中SiCl4平衡转化率与温度、压强的关系(n(SiCl4)、n(N2)、n(H2)仍按1.25 mol SiCl4(g)、1.0 mol N2(g)、10.5mol H2(g)投入)
上图中压强最大的是_____(P1、P2、P3、P4),列式计算合成Si3N4反应在图中A点的分压平衡常数Kp= _______ (用平衡分压代替平衡浓度计算,分压=总压×物质的量分数,图中P2=13MPa)
4、有机物J在有机化工领域具有十分重要的价值。2018年我国首次使用α-溴代羰基化合物合成了J,其合成路线如下:
已知:+R-OH
回答下列问题:
(1)D的名称是______。
(2)D→E反应①的化学方程式是_______。
(3)E→F的反应类型为_______。
(4)J中的含氧官能团除硝基外还有_______ (填官能团名称)。
(5)化合物X是H的同系物,其分子式为C8H9O3N,其核磁共振氢谱有3组峰,则X的结构简式可能为_______(写一种即可)。
(6)D的同分异构体中能发生水解反应有种(不考虑立体异构),其中核磁共振氢谱有4组峰,峰面积之比为1:2:2:3的结构简式为_______。
(7)参照题中合成路线图,设计以2-甲基-1-丙烯和为原料来合成
的合成路线_______。
5、甲烷是重要的气体燃料和化工原料。回答下列问题:
(1)已知、
、
的燃烧热分别为
,
,
。利用甲烷制备合成气的反应为
。
根据上述数据能否计算________(填“能”或“否”),理由是________________。
(2)在某密闭容器中通入和
,在不同条件下发生反应:
测得平衡时的体积分数与温度、压强的关系如图所示。
①________
,
________(填“<”、“>”或“=”)。
②m、n、q三点的化学平衡常数大小关系为________。
③q点甲烷的转化率为________,该条件下的化学平衡常数________(用含有
的表达式表示,
为以分压表示的平衡常数)。
(3)用甲烷和构成的燃料电池电解
溶液,装置如下图所示。反应开始后,观察到x电极附近出现白色沉淀。则A处通入的气体是________,x电极的电极反应式是________。
6、铁是一种常见的金属,在生产生活中用途广泛。
(1)铁在元素周期表中的位置是_______,其基态原子的电子排布式为_______;铁原子核外电子发生跃迁时会吸收或释放不同的光,可以用_______摄取铁元素的原子光谱。
(2)Fe(CO)5与NH3在一定条件下可合成一种具有磁性的氮化铁(Fe3N),NH3分子的立体构型为_______;1mol Fe(CO)5分子中含有σ键为_______mol。
(3)把氯气通人黄血盐{K4[Fe(CN)6]}溶液中,得到赤血盐{K3[Fe(CN)6]},该反应的化学方程式为_______;CN- 中碳原子的杂化轨道类型为_______。C、N、O元素的第一电离能的大小顺序为_______。
(4)FeCl3可与KSCN溶液发生显色反应。SCN-与N2O互为等电子体,则SCN-的电子式为_______。
7、由P、S、Cl、Ni等元素组成的新型材料有着广泛的用途,回答下列问题。
(1)基态Cl原子核外电子占有的原子轨道数为______个,P、S、Cl的第一电离能由大到小顺序为_______。
(2)PCl3分子中的中心原子杂化轨道类型是______,该分子构型为_______。
(3)PH4Cl的电子式为______,Ni与CO能形成配合物Ni(CO)4,该分子中π键与σ键个数比为________。
⑷已知MgO与NiO的晶体结构(如图1)相同,其中Mg2+和Ni2+的离子半径分别为66 Pm和 69 pm,则熔点:MgO___NiO(填“>”、“<”或“=”),理由是______。
(5)若NiO晶胞中离子坐标参数A为(0,0,0),B为(1,1,0),则C离子坐标参数为______。
(6)一定温度下,NiO晶体可以自发地分散并形成“单分子层”,可以认为O2-作密置单层排列, Ni2+填充其中(如图2),已知O2-的半径为a m,每平方米面积上分散的该晶体的质量为____g。(用a、NA表示)
8、2015年,中国药学家屠哟坳获得诺贝尔生理学和医学奖,其突出贡献是创制新型抗疟药青蒿素和双氢青蒿素。青蒿素是从黄花篙中提取得到的一种无色针状晶体,双氢青蒿素是青蒿素的重要衍生物,抗疟疾疗效优于青蒿素。请回答下列问题:
(1)组成青蒿素的三种元素电负性由大到小排序是_________,画出基态O原子的价电子排布图_________。(2)一个青蒿素分子中含有_________个手性碳原子;
(3)双氢青蒿素的合成一般是用硼氢化钠(NaBH4)还原青蒿素。硼氢化物的合成方法有:
2LiH+B2H6=2LiBH4 4NaH+BF3=NaBH4+3NaF
①写出BH4-的等电子体_________ (分子、离子各写一种);
②1976年,美国科学家利普斯康姆(W.N.Lipscomb)因提出多中心键的理论解释B2H6的结构而获得了诺贝尔化学奖。B2H6分子结构如图,2个B原子和一个H原子共用2个电子形成3中心二电子键,中间的2个氢原子被称为“桥氢原子”,它们连接了2个B原子。则B2H6分子中有_________种共价键,B原子的杂化方式为_________。
③NaBH4的阴离子中一个B原子能形成4个共价键,而冰晶石(Na3AlF6)的阴离子中一个Al原子可以形成6个共价键,原因是_________。
④NaH的晶胞如图,则NaH晶体中阳离子的配位数是_________;设晶胞中阴、阳离子为刚性球体且恰好相切,求阴、阳离子的半径比=_________。
9、氢能是一种极具发展潜力的清洁能源,硫碘循环制氢主要的热化学方程式为:
Ⅰ.SO2(g)+2H2O(l)+I2(g)=H2SO4 (l)+2HI(g) △H=35.9 kJ/mol
Ⅱ.2H2SO4(l)=2SO2(g)+O2(g)+2H2O(l) △H=470kJ/mol
Ⅲ.2HI(g)=H2(g)+I2(g) △H=14.9kJ/mol
(1)反应2H2(g)+ O2(g)=2H2O(l)的△H= mol·L-1。
(2)反应Ⅰ在液相中发生称为bensun反应,向水中加入1mol SO2和3mol I2,在不同温度下恰好完全反应生成的n(SO42-)和n(Ix-)的变化见图甲。
①Ix-中x= 。②温度达到120℃时,该反应不发生的原因是 。
(3)反应Ⅲ是在图乙中进行,其中的高分子膜只允许产物通过,高分子膜能使反应程度 ___ (填“增大”、“减小”或“不变”),在该装置中为了进一步增大达平衡时HI的分解率;不考虑温度的影响,还可以采取的措施为 。
(4)图丙是一种制备H2的方法,装置中的MEA为允许质子通过的电解质膜。
①写出阳极电极的反应式: 。
②电解产生的氢气可以用镁铝合金(Mg17Al12)来储存,合金吸氢后得到仅含一种金属的氢化物(其中氢的质量分数为0.077)和一种金属单质,该反应的化学方程式为 。
10、在工业上常用作媒染剂和有机合成上的氯化催化剂,其熔点是
℃,沸点是114℃,在常温常压下为无色液体,在潮湿的空气中易水解。实验室常用氯气和锡单质反应制备
,装置如图所示:
回答下列问题:
(1)固体的晶体类型是___________,装置
的试管中液体显黄色的原因是___________。
(2)该装置采用恒压漏斗的优点是___________。
(3)装置的作用是___________。
(4)实验开始时,先打开恒压漏斗的活塞,当观察到___________(填实验现象)时,再点燃酒精灯。
(5)利用该方法制备的中含有少量
杂质,可利用
与
反应生成
与
,测定产物中
的质量分数,体操作如下:取反应后的固体
于试管中,加适量的盐酸溶解,加入少量
溶液做指示剂,用
标准溶液进行滴定,共用去
溶液的体积为
。
①滴定终点的现象为___________。
②的质量分数是___________。
11、化学需氧量(chemical oxygen demand,简称COD)表示在强酸性条件下重铬酸钾氧化 1 L 污水中有机物所需的氧化剂的量,并换算成以氧气为氧化剂时,1 L水样所消耗O2的质量(mg·L-1)计算。COD小,水质好。某湖面出现赤潮,某化学兴趣小组为测定其污染程度,用 1.176 g K2Cr2O7固体配制成 100 mL溶液,现取水样20.00 mL,加入10.00 mL K2Cr2O7溶液,并加入适量酸和催化剂,加热反应2 h。多余的K2Cr2O7用0.100 0 mol·L-1Fe(NH4)2(SO4)2溶液进行滴定,消耗Fe(NH4)2(SO4)2溶液的体积如下表所示。此时,发生的反应是CrO72-+6Fe2++14H+=2Cr3++6Fe3++7H2O。(已知K2Cr2O7和有机物反应时被还原为 Cr3+,K2Cr2O7的相对分子质量为294)
序号 | 起始读数/mL | 终点读数/mL |
1 | 0.00 | 12.10 |
2 | 1.26 | 13.16 |
3 | 1.54 | 14.64 |
(1)K2Cr2O7溶液的物质的量浓度为______mol·L-1。
(2)求该湖水的COD为______mg·L-1。
12、氮化镓是全球半导体研究的前沿和热点,可由氨气流中高温加热金属镓和碳酸铵的混合物制备。
回答下列问题:
(1)基态Ga原子的价电子排布式为___________;基态N原子的2s电子云半径大于1s电子云半径的原因为___________。
(2)C、N、O、Ga的第一电离能由大到小的顺序为___________;CO的沸点高于相同条件下N2沸点的原因为___________。
(3)NH3的键角小于NH的原因为___________。1 mol NH
中配位键的数目为___________。
(4)CO的立体构型为___________;其中碳原子的杂化方式为___________。
(5)氮化镓晶体有闪锌矿型和纤锌矿型两种结构,晶胞结构如图所示。
①闪锌矿型立方氮化镓晶体中,由氮原子构成的正八面体空隙和正四面体空隙之比为___________。
②若阿伏加德罗常数的值为NA,则纤锌矿型六方氮化镓晶体的密度ρ=___________g·cm-3(用含a、c、NA的代数式表示)。
13、叠氮化钠()不溶于乙醚,微溶于乙醇,易溶于水,常用于汽车安全防护袋的气源,汽车发生剧烈碰撞时,立即自动充气。实验室模拟尿素法制备水合肼(
)并利用其进一步反应制取
的流程如下:
已知:①易溶于水,具有强还原性,易被氧化成
;
②一定条件下,碱性NaClO溶液与尿素溶液反应生成。
回答下列问题:
(1)吸收塔内发生反应的离子方程式为 _______。
(2)写出反应器1中生成水合肼反应的化学方程式:_______。
(3)反应器2中加入无水乙醚的作用是 _______。
(4)已知亚硝酸乙酯的结构简式为,反应器2中生成
和
。若生成39g
,则该反应中转移电子的物质的量为_______。
(5)反应器1要控制NaClO溶液的用量,其主要目的是_______。
(6)某实验室设计了如图所示装置制备。双极膜是阴、阳复合膜,层间的
解离成
和
并可分别通过阴、阳膜定向移动。
①双极膜中产生的_______(填“”或“
”)移向多孔铂电极。
②石墨电极反应式为_______。