1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、氢能是发展中的新能源,它的利用包括氢的制备、储存和应用三个环节。回答下列问题:
(1)利用太阳能直接分解水制氢,是最具吸引力的制氢途径,其能量转化形式为___________________。
(2)氢气能源有很多优点,佴是氢气直接燃烧的能量转化率远低于燃料电池,写出碱性氢氧燃料电池的负极反应式:_______________________________________。
(3)在一定条件下,1mol某金属氢化物MHX与ymolH2发生储氢反应生成1 mol新的金属氢化物,写出该反应的化学反应方程式:___________________________________。
(4)化工生产的副产氢也是氢气的来源。电解法制取有广泛用途的Na2FeO4,同时获得氢气:Fe+2H2O+2OH−FeO42−+3H2↑,工作原理如图所示。装置通电后,铁电极附近生成紫红色的FeO42−,镍电极有气泡产生。已知:Na2FeO4只在强碱性条件下稳定,易被H2还原。
①电解一段时间后,c(OH−)降低的区域在_______(填“阴极室”或“阳极室”)。
②电解过程中,须将阴极产生的气体及时排出,其原因是_______。
3、I下列有关晶体结构或性质的描述中正确的是(______)
A.冰中存在极性键,分子间作用力和氢键
B.因金属性K>Na,故金属钾的熔点高于金属钠
C.各1mol的金刚石与石墨晶体中所含的C-C键的数目相同
D.氧化镁的晶格能大于氯化钠,故其熔点高于氯化钠。
Ⅱ某类金属合金也称为金属互化物,比如:Cu9Al4,Cu5Zn8等。请问答下列问题:
(1)基态锌原子的电子排布式为_______________________________;己知金属锌可溶于浓的烧碱溶液生成可溶性的四羟基合锌酸钠Na2[Zn(OH)4]与氢气,该反应的离子方程式为: ___________________________________________________;已知四羟基合锌酸离子空间构型是正四面体型,则Zn2+的杂化方式为__________________。
(2)铜与类卤素(SCN)2反应可生成Cu(SCN)2,1mol (SCN)2分子中含有__________个σ键。类卤素(SCN)2对应的酸有两种:A—硫氰酸()和B-异硫氰酸(
),两者互为:_________;其中熔点较高的是___________ (填代号),原因是________________________________。
(3)已知硫化锌晶胞如图1所示,则其中Zn2+的配位数是____________; S2-采取的堆积方式为____________________。(填A1或A2或A3)
(4)己知铜与金形成的金属互化物的结构如图2所示,其立方晶胞的棱长为a纳米(nm),该金属互化物的密度为_______g/cm3(用含a,NA的代数式表示)。
4、铜及其化合物在工农业生产及日常生活中应用非常广泛.
(1)纳米级Cu2O由于具有优良的催化性能而受到关注,下表为制取Cu2O的三种方法:
①工业上常用方法Ⅱ和方法Ⅲ制取Cu2O而很少用方法I,其原因是____________。
②已知:
2Cu(s)+1/2O2(g)═Cu2O(s)△H=-169kJ•mol-1,
C(s)+1/2O2(g)═CO(g)△H=-110.5kJ•mol-1,
Cu(s)+1/2O2(g)═2CuO(s)△H=-157kJ•mol-1
则方法I发生的反应:2CuO(s)+C(s)=Cu20(s)+CO(g); △H=____________kJ/mol。
(2)氢化亚铜是一种红色固体,可由下列反应制备:4CuSO4+3H3PO2+6H2O=4CuH↓+4H2SO4+3H3PO4.
该反应每转移3mol电子,生成CuH的物质的量为____________。
(3)氯化铜溶液中铜各物种的分布分数(平衡时某物种的浓度占各物种浓度之和的分数)与c(Cl-) 的关系如图所示。
①当c(Cl-)=9mol•L-1时,溶液中主要的3种含铜物种浓度大小关系为____________。
②在c(Cl-)=1mol•L-1的氯化铜溶液中,滴入AgNO3溶液,含铜物种间转化的离子方程式为____________(任写一个).
(4)已知:Cu(OH)2是二元弱碱;亚磷酸(H3PO3)是二元弱酸,与NaOH溶液反应,生成Na2HPO3.
①在铜盐溶液中Cu2+发生水解反应的平衡常数为____________,(已知:25℃时,Ksp[Cu(OH)2]=2.0×10-20mol3•L-3)
②电解Na2HPO3溶液可得到亚磷酸,装置如图(说明:阳膜只允许阳离子通过,阴膜只允许阴离子通过),则产品室中反应的离子方程式为____________。
5、(6分)如何除去下列物质中混有的少量杂质(括号内为杂质)。写出最佳的离子方程式。
(1)NaHCO3溶液(Na2CO3):________________________。
(2)FeCl2溶液(FeCl3):___________________________。
(3)单质Mg粉(Al):______________________________。
6、氮是一种重要的元素,其对应化合物在生产生活中有重要的应用。
(1)氮化铝(AlN)可用于制备耐高温的结构陶瓷,遇强碱会腐蚀,写出AlN与氢氧化钠溶液反应的离子方程式_______________。
(2)氨是制备氮肥、硝酸等的重要原料②③
①己知:N2(g)+3H2(g) 2NH3(g) △H=-92.4kJ/mol
N2(g)+O2(g) 2NO(g) △H=+180 kJ/mol
2H2(g)+O2(g) 2H2O(1) △H= -571.6 kJ/mol
试写出表示氨的标准燃烧热的热化学方程式________________。
②某电解法制氨的装置如右图所示,电解质只允许质子通过,试写出阴极的电极反应式__________。
(3)反应:2NO(g)+O2(g)2NO2(g)△H<0是制备硝酸过程中的一个反应。
①将NO和O2按物质的量之比为2:1置于恒温恒容密闭容器中进行上述反应,得到NO2体积分数与时间的关系如下图所示。保持其它条件不变,t1时再向容器中充入适量物质的量之比为2:1的NO和O2的混合气体,t2时再次达到平衡,请画出tl-t3时间范围内NO2体积分数随时间的变化曲线:____________。
②在研究此反应速率与温度的关系时发现,NO转化成NO2的速率随温度升高反而减慢。进一步研究发现,上述反应实际是分两步进行的:
I 2NO(g) N2O2(g) △H<0
II N2O2(g)+O2(g) 2NO2(g) △H<0
已知反应I能快速进行,试结合影响化学反应速率的因素和平衡移动理论分析,随温度升高,NO转化成NO2的速率减慢的可能原因________。
(4)已知常温下,Ka(CH3COOH)=Kb(NH3·H2O)=l.8×l0-5。则常温下0.lmol/L的CH3COONH4溶液中,(CH3COO-):c(NH3·H2O)=________________。
7、(1)已知乙醛的沸点为20.8℃,乙醇的沸点为78℃。乙醛沸点比乙醇沸点低的主要原因是______。
(2)有科学家在实验室条件下将干冰制成了原子晶体。则同是原子晶体的和
硬度大小关系
______
(填“>”、“<”或“=”),从结构的角度说明理由______。
8、有X、Y、Z、M、G五种元素,是分属三个短周期并且原子序数依次增大的主族元素。其中X、Z同主族,可形成离子化合物ZX;Y、M同主族,可形成MY2、MY3两种分子。完成下列填空:
(1)元素Y的原子其核外有_______种运动状态不同的电子存在;
(2)在上述元素所构成的单质或化合物中,可用作自来水消毒剂的有_______、_______(至少写出两种,填写化学式);
(3)已知X2M的燃烧热为 187kJ/mol。(提示:燃烧热的定义:1mol可燃物充分燃烧生成稳定化合物时所放出的热量。)写出X2M燃烧的热化学方程式:_________。
9、(1)气态氢化物热稳定性大于
的主要原因是__________。
(2)是离子化合物,各原子均满足8电子稳定结构,
的电子式是_______。
(3)常温下,在水中的溶解度乙醇大于氯乙烷,原因是__________。
10、工业上用含锰废料(主要成分MnO2,含有少量Fe2O3、Al2O3、CuO、CaO等)与烟气脱硫进行联合处理并制备MnSO4的流程如下:
已知:25℃时,部分氢氧化物的溶度积常数(Ksp)如下表所示。
氢氧化物 | Al(OH)3 | Fe(OH)3 | Cu(OH)2 | Mn(OH)2 |
Ksp | 1.3×10-33 | 4.0×10-38 | 2.2×10-20 | 1.9×10-14 |
请回答:
(1)沉淀1的化学式为__________________。
(2)室温下,调节pH为5.试通过计算说明此时Al3+、Fe3+已沉淀完全,理由是_________。(NH4)2S的电子式为________________;“净化”时,加入(NH4)2S的作用为___________________。
(3)“酸化、还原”中,发生的所有氧化还原反应的离子方程式为__________________。
(4)已知:滤液3中除MnSO4外,还含有少量(NH4)2SO4。(NH4)2SO4、MnSO4的溶解度曲线如下图所示。
据此判断,操作“I”应为蒸发浓缩、____________、洗涤、干燥。
(5)工业上可用电解酸性MnSO4溶液的方法制备MnO2,其阳极反应式为________________。
(6)25.35 g MnSO4·H2O样品受热分解过程的热重曲线(样品质量随温度变化的曲线)如下图所示。
①300℃时,所得固体的化学式为______________________。
②1150℃时,反应的化学方程式为___________________。
11、粗ZnS中的S2-的含量可以用“碘量法”测得。准确称取0.150g样品,置于碘量瓶中,移取25.00mL0.1000mo/L的I2—KI溶液于其中,并加入乙酸溶液,密闭,置于暗处充分反应5min,硫元素完全转化为单质硫析出。以淀粉为指示剂,过量的I2用0.1000mol/LNa2S2O3溶液滴定,反应式为I2+2S2O=2I-+S4O
。测定时,消耗Na2S2O3溶液体积24.00mL。请计算样品中S2-的含量为__(计算结果保留三位有效数字,写出计算过程)。
12、Na、Cl、 Cu是中学化学中常见的成盐元素,它们之间能形成多种化合物。回答下列问题:
(1)Na和Cl两种元素能形成多种化合物,如常见的NaCl,其晶胞结构如图1所示,氯离子位于晶胞的顶点和面心。
①Cl的基态原子核外电子排布式为___________。
②图1所示晶胞中,与钠离子最近的钠离子共有_______个。
③在高压下,Na与Cl可产生新的化合物,晶胞结构如图2所示,钠离子位于晶胞的顶点和体心,该物质的化学式为_________。
④Na与Cl在某条件下还能形成一种团簇分子,分子结构如图3所示,氯原子位于顶点和面心。该团簇分子的分子式为______。
(2)Cu、NH3、Cl可以形成[Cu(NH3)4]Cl2。 NH3分子的空间构型为________,[Cu(NH3)4]2+中提供空轨道的是__________,1 mol 该配合物中含有σ键的数目为___________(NA为阿伏加德罗常数的值)。
(3)金属铜采取面心立方最密堆积方式,Cu晶胞的边长为a pm,其晶胞及相关结构如图甲、乙、丙所示:
①铜晶体的密度ρ=____________g·cm-3。
②根据图丙求出铜原子的半径r=_______pm。
13、铅蓄电池的拆解、回收和利用可以减少其对环境的污染,具有重要的可持续发展意义。利用废铅蓄电池的铅膏(主要成分为PbSO4、PbO2),还有少重Pb、Fe2O3、Al2O3)制备PbO的流程如图:
回答下列问题:
(1)步骤①将废铅膏研磨过筛的目的是____。
(2)向废铅膏粉中加入NaOH溶液可将PbSO4转化为PbO,反应的离子方程式是____。
(3)溶液Ⅰ中主要含有的阴离子有OH-、____。
(4)加入CH3COOH溶液和H2O2溶液可将脱硫铅膏中的含铅物质转化为(CH3COO)2Pb。PbO2转化为(CH2COO)2Pb的化学方程式是____。
(5)为使Pb2+完全沉淀并获得纯净的PbO,需向溶液Ⅱ中分两次加入NaOH溶液。第一次加入的目的是____,过滤后,第二次加入NaOH溶液调节溶液的pH至少为____(已知:25℃,Ksp[Fe(OH)3]=4×10-38,Ksp[Pb(OH)2]=1×10-16)。
(6)若废铅膏中铅元素的质量分数为69%,用上述流程对1kg废铅膏进行处理,得到669gPbO,则铅的回收率为____%。